网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
单选题
设函数f(x)在x=2的某邻域内可导,且f′(x)=ef(x),f(2)=1,则f‴(2)=(  )。
A

e2

B

2e2

C

e3

D

2e3


参考答案

参考解析
解析:
因f′(x)=ef(x方程两边对x求导,得f″(x)=ef(x·f′(x)=ef(x·ef(x=e2f(x,两边再对x求导,得f‴(x)=e2f(x·2f′(x)=2e2f(x·ef(x=2e3f(x。又f(2)=1,则f‴(2)=2e3f(2=2e3
更多 “单选题设函数f(x)在x=2的某邻域内可导,且f′(x)=ef(x),f(2)=1,则f‴(2)=(  )。A e2B 2e2C e3D 2e3” 相关考题
考题 设f(x)是定义在[-a,a]上的任意函数,则下列答案中哪个函数不是偶函数? A.f(x)+f(-x) B.f(x)*f(-x) C.[f(x)]2 D.f(x2)

考题 设函数f(x)在x=a的某个邻域内连续,且f(a)为极大值,则存在δ>0,当x∈(a-δ,a+δ)时,必有( )

考题 设函数f(x)在x=a的某个邻域内连续,且f(a)为其极大值,则存在δ>0,当x∈(a-δ,a+δ)时,必有( )。A.(x-a)[f(x)-f(a)]≥0 B.(x-a)[f(x)-f(a)]≤0 C. D.

考题 设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )A.f(a)=0且f′(a)=0 B.f(a)=0且f′(a)≠0 C.f(a)>0且f′(a)> D.f(a)<0且f′(a)<

考题 设随机变量X的密度函数为f(x),且f(-x)=f(x),F(x)是X的分布函数,则对任意实数a有( )。A. B. C.F(-a)=F(a) D.F(-a)=2F(a)-1

考题 已知函数f(x)在x=1处可导,则f'(1)等于: A. 2 B. 1

考题 设f(x)是连续函数,   (Ⅰ)利用定义证明函数可导,且F’(x)=f(x);   (Ⅱ)当f(x)是以2为周期的周期函数时,证明函数也是以2为周期的周期函数.

考题 设函数f(x)可导,且f(x)f'(x)>0,则 A.Af(1)>f(-1) B.f(1)C.|f(1)|>|f(-1)| D.|f(1)|

考题 设f(x)是周期为4的可导奇函数,且f'(x)=2(x-1),x∈[0,2],则f(7)=________.

考题 设f(x)是R上的可导函数,且f(x)>0。若f′(x)-3x---2f(x)=0,且f(0)=1,求f(x)。

考题 设f(x)和g(x)在(-∞,+∞)内可导,且f(x)<g(x),则必有( )《》( )

考题 设随机变量X的概率密度和分布函数分别是f(x)和F(x),且f(x)=f(-x),则对任意实数a,有F(-a)=()A、1/2-F(a)B、1/2+F(a)C、2F(a)-1D、1-F(a)

考题 设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为()A、F2(x)B、F(x)F(y)C、1-[1-F(x)]2D、[1-F(x)][1-F(y)]

考题 填空题设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=____。

考题 填空题设函数f(x)在x=2的某邻域内可导,且f′(x)=ef(x),f(2)=1,则f‴(2)=____。

考题 单选题设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=(  )。A 1/5B 1/7C -1/7D -1/5

考题 问答题设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1/2。证明:必∃ξ、η∈(a,b),使e2ξ=(eb+ea)[f′(η)+f(η)]eη。

考题 单选题设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=(  )。A 1B -1C 1/7D -1/7

考题 单选题若函数f(x)在区间(a,b)内可导,x1和x2是区间(a,b)内任意两点(x1<x2),则至少存在一点ξ,使(  )A f(b)-f(a)=f′(ξ)(b-a)(a<ξ<b)B f(b)-f(x1)=f′(ξ)(b-x1)(x1<ξ<b)C f(x2)-f(x1)=f′(ξ)(x2-x1)(x1<ξ<x2)D f(x2)-f(a)=f′(ξ)(x2-a)(a<ξ<x2)

考题 单选题设y=f(x)是y″-2y′+4y=0的一个解,若f(x0)>0且f′(x0)=0,则f(x)在点x0处(  )。A 取得极大值B 某邻域内单调递增C 某邻域内单调递减D 取得极小值

考题 填空题设f(x)是可导函数,且f′(x)=sin2[sin(x+1)],f(0)=4,f(x)的反函数是x=φ(y),则φ′(4)=____。

考题 单选题设f(x)在(-∞,+∞)内可导,且对任意x2>x1,都有f(x2)>f(x1),则正确的结论是(  )。A 对任意x,f′(x)>0B 对任意x,f′(x)≤0C 函数-f(-x)单调增加D 函数f(-x)单调增加

考题 单选题设函数f(x)在x=2的某邻域内可导,且f′(x)=ef(x),f(2)=1,则f‴(2)=(  )。A e2B e3C 2e2D 2e3

考题 单选题设函数f(x)={x2,x≤1;ax+b,x1},为使函数f(x)在x=1处连续且可导,则()。A a=1,b=0B a=0,b=1C a=2,b=-1D a=-1,b=2

考题 单选题设f(x)是可导函数,且f′(x)=sin2[sin(x+1)],f(0)=4,f(x)的反函数是x=φ(y),则φ′(4)=(  )。A sin2(sin1)B 1/sin2(sin1)C sin(sin1)D 1/sin(sin1)

考题 单选题设f(x)是可导函数,且f′(x)=sin2[sin(x+1)],f(0)=4,f(x)的反函数是x=φ(y),则φ′(4)=(  )。A 1/sin2(sin1)B sin2(sin1)C -sin2(sin1)D -1/sin2(sin1)

考题 单选题设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=(  )。A -1/2B -1/4C -1/7D -1/9