考题
阅读下列说明和流程图,将应填入(n)处的语句写在对应栏内。【说明】下列流程图用于从数组K中找出一切满足:K(I)+K(J)=M的元素对(K(I),K(J))(1≤I≤J≤N)。假定数组K中的N个不同的整数已按从小到大的顺序排列,M是给定的常数。【流程图】此流程图1中,比较“K(I)+K(J):M”最少执行次数约为(5)。
考题
阅读以下说明和流程图,将应填入(n)处的字句写在对应栏内。【说明】已知头指针分别为La和lb的有序单链表,其数据元素都是按值非递减排列。现要归并La和Lb得到单链表Lc,使得Lc中的元素按值非递减排列。程序流程图如下所示:
考题
阅读下列说明和流程图,将应填入(n)的字句写在对应栏内。【说明】下列流程图(如图4所示)用泰勒(Taylor)展开式sinx=x-x3/3!+x5/5!-x7/7!+…+(-1)n×x2n+1/(2n+1)!+…【流程图】计算并打印sinx的近似值。其中用ε(>0)表示误差要求。
考题
阅读下列说明和流程图,将应填入(n)处的语句写在对应栏内。【说明】下列流程图用泰勒(Taylor)展开式y=ex=1+x+x2/2!+x3/3!+…+xn/n!+…计算并打印ex的近似值,其中用ε(>0)表示误差要求。【流程图】
考题
阅读下列说明和流程图,将应填入(n)处的语句写在对应栏内。【说明】有数组A(4,4),把1到16个整数分别按顺序放入A(1,1),…,A(1,4),A(2,1),…,A(2,4),A(3,1),…,A(3,4),A(4,1),…,A(4,4)中,下面的流程图用来获取数据并求出两条对角线元素之积。【流程图】
考题
阅读下列说明和流程图,将应填入(n)处的语句写在对应栏内。【说明】设学生(学生数少于50人)某次考试的成绩按学号顺序逐行存放于某文件中,文件以单行句点“.”为结束符。下面的流程图用于读取该文件,并把全部成绩从高到低排序到数组B[50]中。【流程图】
考题
●试题一阅读下列说明和流程图,将应填入(n)的语句写在答题纸的对应栏内。【流程图说明】下面的流程(如图1所示)用N-S盒图形式描述了在一棵二叉树排序中查找元素的过程,节点有3个成员:data,left和right。其查找的方法是:首先与树的根节点的元素值进行比较:若相等则找到,返回此结点的地址;若要查找的元素小于根节点的元素值,则指针指向此结点的左子树,继续查找;若要查找的元素大于根节点的元素值,则指针指向此结点的右子树,继续查找。直到指针为空,表示此树中不存在所要查找的元素。【算法说明】【流程图】将上题的排序二叉树中查找元素的过程用递归的方法实现。其中NODE是自定义类型:typedef struct node{int data;struct node*left;struct node*right;}NODE;【算法】NODE*SearchSortTree(NODE*tree,int e){if(tree!=NULL){if(tree-datae)(4) ;∥小于查找左子树else if(tree-datae)(5) ;∥大于查找左子树else return tree;}return tree;}
考题
●试题一阅读下列说明和流程图,将应填入(n)的字句写在答题纸的对应栏内。【说明】下列流程图(如图4所示)用泰勒(Taylor)展开式sinx=x-x3/3!+x5/5!-x7/7!+…+(-1)n×x 2n+1/(2n+1)!+…【流程图】图4计算并打印sinx的近似值。其中用ε(0)表示误差要求。
考题
●试题一阅读下列说明和流程图,将应填入(n)处的语句写在答题纸的对应栏内。【说明】下列流程图用于从数组K中找出一切满足:K(I)+K(J)=M的元素对(K(I),K(J))(1≤I≤J≤N)。假定数组K中的N个不同的整数已按从小到大的顺序排列,M是给定的常数。【流程图】此流程图1中,比较"K(I)+K(J)∶M"最少执行次数约为 (5) 。图1