考题
确定糖苷中糖的连接位置,可采用将糖苷进行A.酸化水解B.碱催化水解C.酶催化水解D.氧化裂化E.全甲基化酸催化水解
考题
C-苷的水解条件是( )。A.浓酸催化B.碱催化C.酶催化D.Smith降解E.稀酸催化
考题
可获知苷键构型的水解法是( )A.酸催化水解B.酸催化甲醇解C.碱催化水解D.氧化开裂法E.酶催化水解
考题
苷键构型的水解法是A、碱催化水解法B、酸催化水解法C、酶催化水解法D、酸催化甲醇解E、氧化开裂法
考题
苷键裂解的方法有A.酸催化水解B.酶催化水解C.碱催化水解D.以上都是E.以上都不是
考题
C苷的水解条件是( )A.浓酸催化B.碱催化C.酶催化D.Smith降解E.稀酸催化
考题
可以直接获知苷键构型的水解法是A.酸催化水解B.酸催化甲醇解C.碱催化水解D.氧化开裂法E.酶催化水解
考题
开裂苷键的方法有( )。A.酸催化水解B.碱催化水解C.酶催化水解D.氧化裂解E.甲醇解
考题
确定糖苷中糖的连接位置,可采用将糖苷进行A、氧化裂解B、酶催化水解C、碱催化水解D、酸催化水解E、乙酰解反应
考题
专属性高、水解条件温和的反应是
A.酸催化水解B.酶催化水解C.碱催化水解D.Smith降解E.沉淀反应
考题
苷键中缩醛结构易发生
A.酸催化水解B.酶催化水解C.碱催化水解D.Smith降解E.沉淀反应
考题
酯苷、酚苷水解一般是
A.酸催化水解B.酶催化水解C.碱催化水解D.Smith降解E.沉淀反应
考题
可用于确定糖与糖之间连接顺序和连接位置的是A.酶催化水解反应B.碱催化水解反应C.氧化裂解反应D.甲醇解反应E.乙酰解反应
考题
可用于邻二醇结构裂解的是A.酶催化水解反应B.碱催化水解反应C.氧化裂解反应D.甲醇解反应E.乙酰解反应
考题
确定糖苷中糖的连接位置,可采用将糖苷进行( )。A.酸催化水解B.碱催化水解C.酶催化水解D.氧化裂解E.全甲基化酸催化水解
考题
A.酶催化水解反应B.碱催化水解反应C.氧化裂解反应D.甲醇解反应E.乙酰解反应可用于邻二醇结构裂解的是
考题
确定糖苷中糖的连接位置,可采用将糖苷进行A.氧化裂解B.酶催化水解C.碱催化水解D.酸催化水解E.乙酰解反应
考题
A.温和酸催化水解B.酶催化水解C.强烈酸催化水解D.碱催化水解E.Smith降解法容易引起苷元发生脱水或构型改变的水解是
考题
A.温和酸催化水解B.酶催化水解C.强烈酸催化水解D.碱催化水解E.Smith降解法具有较高专属性的水解方法是
考题
以下有关苷键裂解的说法错误的是A.苷键具有缩醛结构,易为稀酸催化水解B.苷键原子易接受质子的苷键易酸催化水解C.苷键原子不易接受质子的苷键易酸催化水解D.酶催化水解专属性高,条件温和E.碱催化水解多用于酯苷和酚苷的水解
考题
下列苷键水解方法中能获知苷键构型、并保持苷元结构不变的是A.酸催化水解B.碱催化水解C.酶催化水解D.Smith降解E.乙酰解
考题
下列苷键水解方法中能获知苷键构型并保持苷元结构不变的是A.酸催化水解
B.Smith降解
C.乙酰解
D.酶催化水解
E.碱催化水解
考题
下列苷键水解方法中能获知苷键构型、并保持苷元结构不变的是()A、酸催化水解B、碱催化水解C、酶催化水解D、Smith降解E、乙酰解
考题
苷键裂解的方法有()A、酸催化水解法B、碱催化水解法C、酶催化水解D、Smith氧化降解法E、乙酰解法
考题
多选题苷键裂解的方法有()A酸催化水解法B碱催化水解法C酶催化水解DSmith氧化降解法E乙酰解法
考题
单选题确定糖苷中糖的连接位置,可采用将糖苷进行()A
氧化裂解B
酶催化水解C
碱催化水解D
酸催化水解E
乙酰解反应
考题
单选题下列苷键水解方法中能获知苷键构型、并保持苷元结构不变的是()A
酸催化水解B
碱催化水解C
酶催化水解D
Smith降解E
乙酰解