网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
有两个大小不同的圆,直径都增加l厘米,则它们的周长( )。

A.大圆增加的多
B.小圆增加的多
C.增加的一样多
D.无法确定

参考答案

参考解析
解析:
更多 “ 有两个大小不同的圆,直径都增加l厘米,则它们的周长( )。A.大圆增加的多 B.小圆增加的多 C.增加的一样多 D.无法确定” 相关考题
考题 圆A的半径比圆B的半径长3厘米,则可以确定圆A与圆8之间的关系为( )。A.面积之差为67π平方厘米B.面积之差为97π平方厘米C.周长之差为3π厘米D.周长之差为6π厘米

考题 两个圆柱齿轮想要正确的啮合则它们必须具有相同的()。 A.齿数B.模数C.半径D.分度圆直径

考题 纤维绳的大小,根据船上的习惯,一般都量它们的圆周长,并用做计算单位。() A、英寸B、厘米C、毫米

考题 一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行,这两只蚂蚁每秒分别爬行5.5厘米和3.5厘米,它们每爬行1秒,3秒,5秒……(连续的奇数),就调头爬行,那么,它们相遇时已爬行的时间是多少秒?( )A.46B.47C.48D.49

考题 甲、乙两个圆柱形容器均有100厘米深,已知甲容器底面直径为6厘米,乙容器底面直径为9厘米。两个容器内都盛有一定量的水,甲容器水深5厘米,乙容器水深30厘米,现往两个容器内注入等量的水,则当两个容器的水恰好一样深时,此时水深是多少厘米?( )A.45 B.48 C.50 D.60

考题 老师在给同学们讲“圓周率”这个概念,只见她把几个大小不同的圓盘展示给学 生:“大家看,这几个圓盘有什么不同?”同学们说,颜色和大小不同,然后,老师补 充说还有直径、周长等部分也不一样,老师强调指出:“每个圓盘可以分解为圓面、 直径、周长和颜色等各个部分,而每个圓盘又都是由这些部分组成的。”在此基础上, 让学生讨论几个圓盘的不同点(圓面大小、直径、周长和颜色)和相同处(周长都是 直径的三倍多一点),继而引导学生抛开几个圓盘的不同点(非本质属性),抽出共同 点(本质属性),强调,只要是圓,不论大小,它们都有一个固定关系即圓的周长总 是直径的三倍多一点(大约是3.14倍),这个倍数关系我们叫它圓周率,接着问学 生:“什么叫圓周率?”同学们基本上都认识和掌握了圓周率这个概念,老师接着说: “大家都认识了圓周率,希望大家记住,今后我们还会用它来帮助计算和解决有关圓 的问题。” 试分析这位老师在教学过程中运用了哪些思维过程。

考题 将半径分别为4厘米和3厘米的两个半圆如图放置,则阴影部分的周长是()。 A. 21.98厘米 B. 27.98厘米 C. 25.98厘米 D. 31.98厘米

考题 把一根边长为4厘米的正方形铁丝框拉成两个同样大小的圆形铁丝框,则每个圆铁丝框的面积为( )

考题 老师在给同学们讲“圆周率”这个概念。只见她把几个大小不同的圆盘展示给学生:“大家看,这几个圆盘有什么不同?”同学们说,颜色和大小都不同。然后,老师补充说还有直径、周长等部分也不一样。老师强调指出:每个圆盘可以分解为圆面、直径、周长和颜色等各个部分,而每个圆盘又都是由这些部分组成的。在此基础上,让学生讨论几个圆盘的不同点(圆面大小、直径、周长和颜色)和相同处(周长都是直径的三倍多一点),继而引导学生抛开几个圆盘的不同点(非本质属性),抽出共同点(本质属性)。然后强调,只要是圆,不论大小,他们都有一个固定关系,即圆的周长总是直径的三倍多一点(大约是3.14倍),这个倍数关系我们叫它圆周率,接着问学生:“什么叫圆周率?”同学们基本上都认识和掌握了圆周率这个概念。老师接着说:“大家都认识了圆周率,希望大家记住,今后我们还会用它来帮助计算和解决有关圆的问题。” 试分析这位教师在教学过程中运用了哪些思维过程。

考题 两个圆柱齿轮想要正确的啮合则它们必须具有相同的()。A、齿数B、模数C、半径D、分度圆直径

考题 计算题:已知圆的直径为20mm,请计算圆的周长L?

考题 某圆锥容器底圆直径80厘米高60厘米,则其容积为()L。A、300B、200C、100D、33

考题 两个渐开线直齿圆柱齿轮的齿数不同,但基圆直径相同,则它们一定可以用同一把齿轮铣刀加工

考题 摆度圆的()就是通常所说的摆度A、半径B、直径C、周长D、大小

考题 两根实心圆轴的直径d和长度L都相同,而材料不同,在相同扭矩作用下:它们横截面上的最大切应力是否相同?()单位长度的扭转角是否相同?()。

考题 有大小两个正方形,它们边长的比是5:4,它们周长的比是()A、5:4B、25:16C、4:5D、16:25

考题 将一个直径是10厘米的纸圆对折,用剪刀剪成两个半圆,求一个半圆周长的算式是()A、π×10÷2+10B、π×10-10C、π×10÷2

考题 老师在给同学们讲“圆周率”这一概念,只见她把几个大小不同的圆盘展示给学生:“大家看,这几个圆盘有什么不同”同学们说,颜色和大小不同。然后,老师补充说还有直径、周长等部分也不一样。老师强调指出:“每个圆盘可以分解为圆面、直径、周长和颜色等各个部分,而每个圆盘又都是由这些部分组成的。” 在此基础上,让学生讨论几个圆盘的不同点(圆面大小、直径、周长和颜色)和相同处(周长都是直径的三倍多一点),继而引导学生抛开几个圆盘的不同点(非本质属性),抽出共同点(本质属性),同时强调,只要是圆,不论大小,它们都有一个固定关系即圆的周长总是直径的三倍多一点(大约是3.14倍),这个倍数关系我们叫它圆周率,接着问学生:“什么叫圆周率”同学们基本上都认识和掌握了圆周率这个概念,老师接着说:“大家都认识了圆周率,希望大家记住,今后我们还会用它来帮助计算和解决有关圆的问题。” 小学生的思维发展的主要特点是()。A、直觉动作思维占优势B、具体形象思维向抽象逻辑思维过渡C、抽象逻辑思维占主导D、聚合思维占主导

考题 单选题摆度圆的()就是通常所说的摆度。A 半径B 直径C 周长D 大小

考题 多选题老师在给同学们讲“圆周率”这一概念,只见她把几个大小不同的圆盘展示给学生:“大家看,这几个圆盘有什么不同?”同学们说,颜色和大小不同。然后,老师补充说还有直径、周长等部分也不一样。老师强调指出:“每个圆盘可以分解为圆面、直径、周长和颜色等各个部分,而每个圆盘又都是由这些部分组成的。” 在此基础上,让学生讨论几个圆盘的不同点(圆面大小、直径、周长和颜色)和相同处(周长都是直径的三倍多一点),继而引导学生抛开几个圆盘的不同点(非本质属性),抽出共同点(本质属性),同时强调,只要是圆,不论大小,它们都有一个固定关系即圆的周长总是直径的三倍多一点(大约是3.14倍),这个倍数关系我们叫它圆周率,接着问学生:“什么叫圆周率?”同学们基本上都认识和掌握了圆周率这个概念,老师接着说:“大家都认识了圆周率,希望大家记住,今后我们还会用它来帮助计算和解决有关圆的问题。” 思维的基本过程是()。A分析B综合C概括D系统化

考题 多选题老师在给同学们讲“圆周率”这一概念,只见她把几个大小不同的圆盘展示给学生:“大家看,这几个圆盘有什么不同?”同学们说,颜色和大小不同。然后,老师补充说还有直径、周长等部分也不一样。老师强调指出:“每个圆盘可以分解为圆面、直径、周长和颜色等各个部分,而每个圆盘又都是由这些部分组成的。” 在此基础上,让学生讨论几个圆盘的不同点(圆面大小、直径、周长和颜色)和相同处(周长都是直径的三倍多一点),继而引导学生抛开几个圆盘的不同点(非本质属性),抽出共同点(本质属性),同时强调,只要是圆,不论大小,它们都有一个固定关系即圆的周长总是直径的三倍多一点(大约是3.14倍),这个倍数关系我们叫它圆周率,接着问学生:“什么叫圆周率?”同学们基本上都认识和掌握了圆周率这个概念,老师接着说:“大家都认识了圆周率,希望大家记住,今后我们还会用它来帮助计算和解决有关圆的问题。” 案例中,出现了哪几个思维过程?()A概括B比较C具体化D抽象

考题 单选题老师在给同学们讲“圆周率”这一概念,只见她把几个大小不同的圆盘展示给学生:“大家看,这几个圆盘有什么不同”同学们说,颜色和大小不同。然后,老师补充说还有直径、周长等部分也不一样。老师强调指出:“每个圆盘可以分解为圆面、直径、周长和颜色等各个部分,而每个圆盘又都是由这些部分组成的。” 在此基础上,让学生讨论几个圆盘的不同点(圆面大小、直径、周长和颜色)和相同处(周长都是直径的三倍多一点),继而引导学生抛开几个圆盘的不同点(非本质属性),抽出共同点(本质属性),同时强调,只要是圆,不论大小,它们都有一个固定关系即圆的周长总是直径的三倍多一点(大约是3.14倍),这个倍数关系我们叫它圆周率,接着问学生:“什么叫圆周率”同学们基本上都认识和掌握了圆周率这个概念,老师接着说:“大家都认识了圆周率,希望大家记住,今后我们还会用它来帮助计算和解决有关圆的问题。” 小学生的思维发展的主要特点是()。A 直觉动作思维占优势B 具体形象思维向抽象逻辑思维过渡C 抽象逻辑思维占主导D 聚合思维占主导

考题 单选题老师在给同学们讲“圆周率”这一概念,只见她把几个大小不同的圆盘展示给学生:“大家看,这几个圆盘有什么不同?”同学们说,颜色和大小不同。然后,老师补充说还有直径、周长等部分也不一样。老师强调指出:“每个圆盘可以分解为圆面、直径、周长和颜色等各个部分,而每个圆盘又都是由这些部分组成的。” 在此基础上,让学生讨论几个圆盘的不同点(圆面大小、直径、周长和颜色)和相同处(周长都是直径的三倍多一点),继而引导学生抛开几个圆盘的不同点(非本质属性),抽出共同点(本质属性),同时强调,只要是圆,不论大小,它们都有一个固定关系即圆的周长总是直径的三倍多一点(大约是3.14倍),这个倍数关系我们叫它圆周率,接着问学生:“什么叫圆周率?”同学们基本上都认识和掌握了圆周率这个概念,老师接着说:“大家都认识了圆周率,希望大家记住,今后我们还会用它来帮助计算和解决有关圆的问题。” 圆的面积S—πr2,这属于()。A 符号学习B 概念学习C 命题学习D 下位学习

考题 问答题阅读下面材料,回答问题。  老师在给同学们讲“圆周率”这个概念,只见她把几个大小不同的圆盘展示给学生:“大家看,这几个圆盘有什么不同?”同学们说,颜色和大小不同。然后,老师补充说还有直径、周长等部分也不一样,老师强调指出:“每个圆盘可以分解为周面、直径、周长和颜色等各个部分,而每个圆盘又都是由这些部分组成的。”在此基础上,让学生讨论几个圆盘的不同点(圆面大小、直径、周长和颜色)和相同处(周长都是直径的三倍多一点),继而引导学生抛开几个圆盘的不同点(非本质属性),抽出共同点(本质属性),强调:只要是圆,不论大小,它们都有一个固定关系即圆的周长总是直径的三倍哆一点(大约是3.14倍),这个倍数关系我们叫它圆周率。老师接着问学生:“什么叫圆周率??同学们基本上都认识和掌握了圆周率这个概念,老师接着说:“大家都认识了圆周率,希望大家记住,今后我们还会用它来帮助计算和解决有关圆的问题。”  问题:试分析这位老师在教学过程中运用了哪些思维过程。

考题 单选题有大小两个正方形,它们边长的比是5:4,它们周长的比是()A 5:4B 25:16C 4:5D 16:25

考题 单选题圆周率π的计算方法为:()。A 圆的周长除以直径B 圆的直径除以周长C 圆的周长除以半径D 圆的半径除以周长

考题 单选题将一个直径是10厘米的纸圆对折,用剪刀剪成两个半圆,求一个半圆周长的算式是()A π×10÷2+10B π×10-10C π×10÷2