网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
在“3的倍数的特征”一课中,教师通常让学生在百数表中圈出所有3的倍数,再引导学生从不同角度观察所圈数的特征,最后得出3的倍数的特征,这样的推理是________。
参考答案
参考解析
解析:不完全归纳推理。
完全归纳推理,又称“完全归纳法”,它是以某类中每一对象(或子类)都具有或不具有某一属性为前提,推出以该类对象全部具有或不具有该属性为结论的归纳推理。不完全归纳推理,以关于某类事物中部分对象的判断为前提,推出关于某类事物全体对象的判断做结论的推理。生活中,完全归纳推理是不多的,不完全归纳推理则是大量的。
完全归纳推理,又称“完全归纳法”,它是以某类中每一对象(或子类)都具有或不具有某一属性为前提,推出以该类对象全部具有或不具有该属性为结论的归纳推理。不完全归纳推理,以关于某类事物中部分对象的判断为前提,推出关于某类事物全体对象的判断做结论的推理。生活中,完全归纳推理是不多的,不完全归纳推理则是大量的。
更多 “在“3的倍数的特征”一课中,教师通常让学生在百数表中圈出所有3的倍数,再引导学生从不同角度观察所圈数的特征,最后得出3的倍数的特征,这样的推理是________。” 相关考题
考题
参加大型团体表演的学生共300名,他们面对教练站成一排,从左到右按l、2、3、4、5……依次报数,教练要求全体学生牢记各自所报的数,并做下列动作:先让报的数是3的倍数的学生向后转,接着让报的数是5的倍数的学生向后转,最后让报的数是7的倍数的学生向后转。则此时还有()名学生面对教练。A.152
B.181
C.166
D.174
考题
小学数学《3的倍数的特征》
一、考题回顾
二、考题解析
【教学过程】
(一)导入新课
上节课我们研究了2、5的倍数的特征,
提问:1.你能用1、2、5三个数摆出2、5的倍数的三位数么?有几种摆法?
能不能随意说出一个三位数是3的倍数?并说说什么样的数是3的倍数么?
预设:123是3的倍数,我觉得个位上是3、6、9的数是3的倍数;
得出:其实234、333、555都是3的倍数。
要求学生动手验证,并得出结论:个位上是3、6、9的数不一定是3的倍数。比如13。
引导学生探究3的倍数,并揭示课题——3的倍数的特征。
(二)探索新知
出示百数表,人手一份,要求学生观察百数表,标记其中3的倍数的数,大胆猜想3的倍数的特征。
学生独立思考,尝试标记、验证,初步形成自己的解决方案。教师巡视,了解学生的学习情况,并及时指导;完成的同学,同学之间交流一下自己的解决问题的方法。然后小组内展示各自解决问题的方案,比一比谁的想法更棒,形成小组意见。
预设:3的倍数的数在百数表上组成了一条斜线,比如:3、12、24;6、15、24、33、42、51;
提问:观察发现:个位上和十位上的数均没有什么规律,那将每个数的各个数字加起来呢?
预设:各个数位上的数字之和是3的倍数,那么这个数就是3的倍数。题目来源于考生回忆
提问:大家可以利用百数表中的数来验证下?
学生动手实践,得出结论。
提问:还记得课前老师说的234、333、555么?这些数满足特征么?如果是更大的数也符合条件么?
预设:2016年又要开冬季奥运会了,2+0+1+6=9,9是3的倍数,2016=3*672,确实是3的倍数。
要求学生利用手中的计算器或列竖式来计算、验证结论,小组讨论交流。教师巡视指导。
总结:各个数位的数字之和如果是3的倍数,这个数就是3的倍数。
(三)课堂练习
提问:能不能找到一个三位数是2、5、3的倍数?
学生讨论汇报:135,各个数位的数字之和是3的倍数且个位是0。
(四)小结作业
小结:通过这节课的学习,你有什么收获?你对今天的学习还有什么疑问吗?
作业:想一想,9的倍数的特征?
【板书设计】
【答辩题目解析】
1.为什么要学习3的倍数的特征?
2.在本节课的教学过程中,你是如何设计探究3的倍数的特征的?题目来源于考生回忆
考题
细菌总数监测中,若所有稀释度的平均菌落数均大于300,则细菌总数菌落计数应()报告。A、按稀释倍数最大的平均菌落数乘以稀释倍数B、按稀释倍数最小的平均菌落数乘以稀释倍数C、任选一个稀释倍数的平均菌落数乘以稀释倍数
考题
单选题细菌总数监测中,若所有稀释度的平均菌落数均大于300,则细菌总数菌落计数应()报告。A
按稀释倍数最大的平均菌落数乘以稀释倍数B
按稀释倍数最小的平均菌落数乘以稀释倍数C
任选一个稀释倍数的平均菌落数乘以稀释倍数
考题
单选题有4个不同的自然数,他们当中任意两数的和是2的倍数,任意3个数的和是3的倍数,为了使这4个数的和尽可能小,则这4个数的和为()A
40B
42C
46D
51
热门标签
最新试卷