网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
杠OA = l ,绕定轴 O 以角速度ω 转动,同时通过 A 端推动滑块 B 沿轴 x 运动,设分析运动的时间内杆与滑块并不脱离,则滑块的速度ν B 的大小用杆的转角? 与角速度ω 表示为:

(A)ν B = lωsin ?
(B)ν B = lωcos ?
(C)ν B = lωcos2 ?
(D)ν B =lωsin2 ?


参考答案

参考解析
解析:解:选B。
A 点的速度为lω ,方向垂直于杆OA 指向下方,将其往x 方向投影,得νB = lωcos ?
更多 “杠OA = l ,绕定轴 O 以角速度ω 转动,同时通过 A 端推动滑块 B 沿轴 x 运动,设分析运动的时间内杆与滑块并不脱离,则滑块的速度ν B 的大小用杆的转角? 与角速度ω 表示为: (A)ν B = lωsin ? (B)ν B = lωcos ? (C)ν B = lωcos2 ? (D)ν B =lωsin2 ?” 相关考题
考题 杆OA绕固定轴O转动,长为l,某瞬时杆端A点的加速度a如题52图所示。则该瞬时OA的角速度及角加速度为(  )。

考题 均质细直杆AB长为l,质量为m,以匀角速度ω绕O轴转动,如图所示,则AB杆的动能为:

考题 图示杠OA=l,绕定轴O以角速度ω转动,同时通过A端推动滑块B沿轴x运动,设分析运动的时间内杆与滑块并不脱离,则滑块的速度vB的大小用杆的转角ψ与角速度ω表示为:

考题 均质细直杆OA长为l,质量为m,A端固结一质量为m的小球(不计尺寸),如图所示。当OA杆以匀角速度绕O轴转动时,该系统对O轴的动量矩为:

考题 杆OA=l,绕固定轴O转动,某瞬时杆端A点的加速度a如图所示,则该瞬时杆OA的角速度及角加速度分别为:

考题 T形均质杆OABC以匀角速度ω绕O轴转动,如图所示。已知OA杆的质量为2m,长为2l,BC杆质量为m,长为l,则T形杆在该位置对O轴的动量矩为:

考题 均质杆OA,重P,长l,可在铅直平面内绕水平固定轴O转动。杆在图示铅直位置时静止,欲使杆转到水平位置,则至少要给杆的角速度是(  )。

考题 匀质杆质量为m,长OA=l,在铅垂面内绕定轴o转动。杆质心C处连接刚度系数是较大的弹簧,弹簧另端固定。图示位置为弹簧原长,当杆由此位置逆时针方向转动时,杆上A点的速度为VA,若杆落至水平位置的角速度为零,则vA的大小应为:

考题 图示质量为m、长为l的杆OA以的角速度绕轴O转动,则其动量为:

考题 杆OA绕固定轴O转动,长为l。某瞬时杆端A点的加速度a如图所示,则该瞬时OA的角速度及角加速度为(  )。

考题 杆OA = l,绕固定轴O转动,某瞬时杆端A点的加速度a如图所示,则该瞬时杆OA的角速度及角加速度为:

考题 均质细直杆OA长为ι,质量为m,A端固结一质量为m的小球(不计尺寸),如图所示。当OA杆以匀角速度绕O轴转动时,该系统对O轴的动量矩为:

考题 杆OA绕固定轴0转动,长为l。某瞬时杆端A点的加速度a如图所示,则该瞬时OA 的角速度及角加速度为:

考题 曲柄OA在如图30-9所示瞬时以ω的角速度绕轴O转动,并带动直角曲杆O1BC在如图所示平面内运动。若取套筒A为动点,杆O1BC为动系,则牵连速度大小为(  )。

考题 均质直角曲杆OAB的单位长度质量为ρ,OA=AB=2l,图示瞬时以角速度ω、角加速度α绕轴O转动,该瞬时此曲杆对O轴的动量矩的大小为:

考题 杠OA=l,绕定轴O以角速度ω转动,同时通过A端推动滑块B沿轴X运动,设分析运动的时间内杆与滑块并不脱离,则滑块的速度vB的大小用杆的转角φ与角速度ω表示为: A. vB= lωcosinφ B. vB=lωcosφ C. vB=lωcos2φ D. vB=lωsin2φ

考题 如图所示质量为m、长为l的均质杆OA绕O轴在铅垂平面内作定轴转动。已知某瞬时杆的角速度为ω,角加速度为α,则杆惯性力系合力的大小为(  )。

考题 均质细直杆OA长为l ,质量为m,A端固结一质置为m的小球(不计尺寸),如图所示。当OA杆以匀角速度w绕O轴转动时,该系统时O轴的动量矩为:

考题 T形均质杆OABC以匀角速度ω绕O轴转动,如图所示。已知OA杆的质量为2m,长为2l,BC杆质量为m,长为l,则T形杆在图示位置时动量的大小为:

考题 图示曲柄连杆机构中,OA=r,AB=2r,OA、AB及滑块B质量均为m,曲柄以ω的角速度绕O轴转动,则此时系统的动能为:

考题 杆OA=1,绕定轴O以角速度ω转动,同时通过A端推动滑块B沿轴x运动(图4-49)。设分析运动的时间内杆与滑块并不脱离,则滑块的速度vB的大小用杆的转角φ与角速度ω表示为( )。 A. vB=lωsinφ B. vB=lωcosφ C. vB=lωcos2φ D. vB=lωsin2φ

考题 如图4-71所示曲柄连杆机构中,OA=r,AB=2r,OA、 AB及滑块B质量均为m, 曲柄以ω的角速度绕O轴转动,则此时系统的动能为( )。

考题 如图4-48所示直角弯杆OAB以匀角速度ω绕O轴转动,并带动小环M沿OD杆运动。已知OA=l,取小环M为动点,OAB杆为动系,当 φ =60°时,M点牵连加速度ae的大小为( )。

考题 如图4-57所示质量为m、长为l 的杆OA以ω的角速度绕轴O转动,则其动量为 ( )。

考题 均质细直杆AB长为l,质量为m,以匀角速度ω绕O轴转动,如图4-69所示, 则AB杆的动能为( )。

考题 杆OA=l,绕固定轴O转动,某瞬时杆端A点的加速度a如图4-41所示,则该瞬时杆OA的角速度及角加速度为( )。