网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
若f(x)在点x=1连续而且可导,则k的值是:
A. 2 B. -2 C.-1 D. 1


参考答案

参考解析
解析:提示:利用函数在一点连续且可导的定义确定k值。计算如下:

更多 “若f(x)在点x=1连续而且可导,则k的值是: A. 2 B. -2 C.-1 D. 1” 相关考题
考题 若f(x)在处可导,则∣f(x)∣在x=x0处() A、可导B、不可导C、连续但未必可导D、不连续

考题 若f(x)在点x有极限,则结论()成立。 A、f(x)在点x。可导B、f(x)在点x。连续C、f(x)在点x。有定义D、f(x)在点x。可能没有定义

考题 下列命题正确的是(). A若|f(x)|在x=a处连续,则f(x)在x=a处连续 B若f(x)在x=a处连续,则|f(x)|在x=a处连续 C若f(x)在x=a处连续,则f(x)在z-a的一个邻域内连续 D若[f(a+h)-f(a-h)]=0,则f(x)在x=a处连续

考题 A.F(x)在x=0点不连续 B.F(x)在(-∞,+∞)内连续,在x=0点不可导 C.F(x)在(-∞,+∞)内可导,且满足F′(x)=f(x) D.F(x)在(-∞,+∞)内可导,但不一定满足F′(x)=f(x)

考题 若f(x)在点x=a处可导,则f′(a)≠( )。

考题 设函数若f(x)在x=0处可导,则a的值是: A. 1 B. 2 C. 0 D. -1

考题 设函数f(x)在x=1处可导,且f'(1)=0,若f"(1)>0,则f(1)是()A.极大值 B.极小值 C.不是极值 D.是拐点

考题 (Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.

考题 设,则f(x)在点x=1处: A.不连续 B.连续但左、右导数不存在 C.连续但不可导 D.可导

考题 设f(x)为[a,b]上的连续函数,则下列命题不正确的是( )。A.f(x)在[a,b]上有最大值 B.f(x)在[a,b]上一致连续 C.f(x)在[a,b]上可积 D.f(x)在[a,b]上可导

考题 设其中g(x)是有界函数,则f(x)在x=0点( )。A、极限不存在 B、极限存在但不连续 C、连续、但不可导 D、可导

考题 若函数f(x)在[0,1]上黎曼可积,则f(x)在[0,1]上( )。 A.连续 B.单调 C.可导 D.有界

考题 设y=f(x)可导,点a0=2为f(x)的极小值点,且f(2)=3,则曲线y=f(x)在点(2,3)处的切线方程为______.

考题 下列命题中正确的为()A.若xo为f(x)的极值点,则必有,f'(xo)=0 B.若f'(xo)=0,则点xo必为f(x)的极值点 C.若f'(xo)≠0,则点xo必定不为f(x)的极值点 D.若f(x)在点xo处可导,且点xo为f(x)的极值点,则必有f'(xo)=0

考题 设函数f(x)在[0,b]连续,在(a,b)可导,f′(x)>0.若f(a)·f(b)A.不存在零点 B.存在唯一零点 C.存在极大值点 D.存在极小值点

考题 若连续函数y=f(x)在x0点不可导,则曲线y=f(x)在(x0,f(x0))点没有切线.

考题 下列结论不正确的是()。A、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处连续B、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处可导C、z=f(x,y)在点(x0,y0)处可导,则f(x,y)在点(x0,y0)处可微D、z=f(x,y)在点(x0,y0)处偏导数连续,则f(x,y)在点(x0,y0)处连续

考题 以下叙述正确的是:连续函数f(x)在[a,b]上的定积分等于()。A、f(x)的导函数在b点的值减去在a点的值B、f(x)的导函数在a点的值减去在b点的值C、f(x)的原函数在b点的值减去在a点的值D、f(x)的原函数在a点的值减去在b点的值

考题 设函数f(x)=丨x丨,则函数在点x=0处()A、连续且可导B、连续且可微C、连续不可导D、不可连续不可微

考题 若函数f(x,y)在闭区域D上连续,下列关于极值点的陈述中正确的是()。A、f(x,y)的极值点一定是f(x,y)的驻点B、如果P0是f(x,y)的极值点,则P0点处B2-AC0C、如果P0是可微函数f(x,y)的极值点,则P0点处df=0D、f(x,y)的最大值点一定是f(x,y)的极大值点

考题 下列结论不正确的是()。A、y=f(x)在点x0处可微,则f(x)在点x0处连续B、y=f(x)在点x0处可微,则f(x)在点x0处可导C、y=f(x)在点x0处连续,则f(x)在点x0处可微D、y=f(x)在点x0处可导,则f(x)在点x0处连续

考题 单选题设函数f(x)=丨x丨,则函数在点x=0处()A 连续且可导B 连续且可微C 连续不可导D 不可连续不可微

考题 单选题若f(x)在x0点可导,则|f(x)|在点x0点处(  )。A 必可导B 连续但不一定可导C 一定不可导D 不连续

考题 单选题(2011)如果f(x)在x0可导,g(x)在x0不可导,则f(x)g(x)在x0:()A 可能可导也可能不可导B 不可导C 可导D 连续

考题 判断题若连续函数y=f(x)在x0点不可导,则曲线y=f(x)在(x0,f(x0))点没有切线.A 对B 错

考题 单选题下列说法中正确的是(  )。[2014年真题]A 若f′(x0)=0,则f(x0)必须是f(x)的极值B 若f(x0)是f(x)的极值,则f(x)在点x0处可导,且f′(x0)=0C 若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的必要条件D 若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的充分条件

考题 问答题设f(x)在[a,+∞)上连续,在(a,+∞)内可导,且f′(x)>k>0(k为常数),又f(a)<0,证明方程f(x)=0在(a,a-f(a)/k)内有唯一实根。