网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设函数f(x)在[0,b]连续,在(a,b)可导,f′(x)>0.若f(a)·f(b)<0,则y=f(x)在(a,b)().

A.不存在零点
B.存在唯一零点
C.存在极大值点
D.存在极小值点

参考答案

参考解析
解析:由于f(x)在[a,b]上连续f(z)·fb)<0,由闭区间上连续函数的零点定理可知,y=f(x)在(a,b)内至少存在一个零点.又由于f(x)>0,可知f(x)在(a,b)内单调增加,因此f(x)在(a,b)内如果有零点,则至多存在一个.综合上述f(x)在(a,b)内存在唯一零点,故选B.
更多 “设函数f(x)在[0,b]连续,在(a,b)可导,f′(x)>0.若f(a)·f(b)A.不存在零点 B.存在唯一零点 C.存在极大值点 D.存在极小值点” 相关考题
考题 若f(x)在处可导,则∣f(x)∣在x=x0处() A、可导B、不可导C、连续但未必可导D、不连续

考题 设f(x)在[0,1]上可导,且满足f(1)=∫01xf(x)dx,证明:必有一点ξ∈(0,1),使得ξf(ξ)+f(ξ)=0.

考题 设f(x)在(-∞,+∞)上是偶函数,若f'(-x0)=-K≠0,则f(x0)等于:

考题 设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )A.f(a)=0且f′(a)=0 B.f(a)=0且f′(a)≠0 C.f(a)>0且f′(a)> D.f(a)<0且f′(a)<

考题 A.F(x)在x=0点不连续 B.F(x)在(-∞,+∞)内连续,在x=0点不可导 C.F(x)在(-∞,+∞)内可导,且满足F′(x)=f(x) D.F(x)在(-∞,+∞)内可导,但不一定满足F′(x)=f(x)

考题 设函数 f (x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有 f ' (x) >0, f '' (x) >0, 则在(- ∞ ,0)内必有: (A) f ' > 0, f '' > 0 (B) f ' 0 (C) f ' > 0, f ''

考题 设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0, f''(x)>0,则在(-∞,0)内必有: A. f'(x)>0, f''(x)>0 B.f'(x)<0, f''(x)>0 C. f'(x)>0, f''(x)<0 D. f'(x)<0, f''(x)<0

考题 设函数f(x)在x=1处可导,且f'(1)=0,若f"(1)>0,则f(1)是()A.极大值 B.极小值 C.不是极值 D.是拐点

考题 (Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.

考题 下列命题中,正确的是( ).A.单调函数的导函数必定为单调函数 B.设f(x)为单调函数,则f(x)也为单调函数 C.设f(x)在(a,b)内只有一个驻点xo,则此xo必为f(x)的极值点 D.设f(x)在(a,b)内可导且只有一个极值点xo,f(xo)=0

考题 设f(x)为[a,b]上的连续函数,则下列命题不正确的是( )。A.f(x)在[a,b]上有最大值 B.f(x)在[a,b]上一致连续 C.f(x)在[a,b]上可积 D.f(x)在[a,b]上可导

考题 若函数f(x)在[0,1]上黎曼可积,则f(x)在[0,1]上( )。 A.连续 B.单调 C.可导 D.有界

考题 设f(x)是R上的可导函数,且f(x)>0。若f′(x)-3x---2f(x)=0,且f(0)=1,求f(x)。

考题 设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0,f''(x)>0,则在(-∞,0)内必有( )。 A. f'(x)>0,f''(x)>0 B. f(x) 0 C. f'(x)>0,f''(x)

考题 若连续函数y=f(x)在x0点不可导,则曲线y=f(x)在(x0,f(x0))点没有切线.

考题 设函数在(a,b)内连续,则在(a,b)内()。A、f(x)必有界B、f(x)必可导C、f(x)必存在原函数D、D.必存在一点ξ∈(a,,使f(ξ)=0

考题 设函数f(x)=丨x丨,则函数在点x=0处()A、连续且可导B、连续且可微C、连续不可导D、不可连续不可微

考题 设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)0,f"(x)0,则在(-∞,0)内必有()。A、f'(x)0,f"(x)0B、f'(x)0,f"(x)0C、f'(x)O,f"(x)0D、f'(x)0,f"(x)0

考题 下列结论不正确的是()。A、y=f(x)在点x0处可微,则f(x)在点x0处连续B、y=f(x)在点x0处可微,则f(x)在点x0处可导C、y=f(x)在点x0处连续,则f(x)在点x0处可微D、y=f(x)在点x0处可导,则f(x)在点x0处连续

考题 问答题设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b)。证明:在(a,b)内至少存在一点ξ,使得f′(ξ)>0。

考题 单选题设函数f(x)=丨x丨,则函数在点x=0处()A 连续且可导B 连续且可微C 连续不可导D 不可连续不可微

考题 判断题若连续函数y=f(x)在x0点不可导,则曲线y=f(x)在(x0,f(x0))点没有切线.A 对B 错

考题 问答题设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,且存在相等的最大值。若f(a)=g(a),f(b)=g(b),证明:  (1)存在η∈(a,b)使f(η)=g(η);  (2)存在ξ∈(a,b)使f″(ξ)=g″(ξ)。

考题 问答题设f(x)在[0,π]上连续,在(0,π)内可导,证明:必∃ξ∈(0,π),使f′(ξ)+3f(ξ)cotξ=0。

考题 单选题下列说法中正确的是(  )。[2014年真题]A 若f′(x0)=0,则f(x0)必须是f(x)的极值B 若f(x0)是f(x)的极值,则f(x)在点x0处可导,且f′(x0)=0C 若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的必要条件D 若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的充分条件

考题 问答题设f(x)在[a,+∞)上连续,在(a,+∞)内可导,且f′(x)>k>0(k为常数),又f(a)<0,证明方程f(x)=0在(a,a-f(a)/k)内有唯一实根。

考题 问答题设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。