网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
2、八数码问题中, 启发函数f(x)=g(x)+h(x)中的常使用____来定义g(x)。
A.节点x与目标状态位置不同的棋子个数
B.节点x的子节点数
C.节点 x 与目标状态位置相同的棋子个数
D.节点x所在层数
参考答案和解析
节点x与目标状态位置相同的棋子个数。
更多 “2、八数码问题中, 启发函数f(x)=g(x)+h(x)中的常使用____来定义g(x)。A.节点x与目标状态位置不同的棋子个数B.节点x的子节点数C.节点 x 与目标状态位置相同的棋子个数D.节点x所在层数” 相关考题
考题
设f(x),g(x),h(x)均为奇函数,则()中所给定的函数是偶函数。
A、f(x)g(x)h(x)B、[f(x)+g(x)]h(x)C、f(x)+g(x)D、f(x)+g(x)+h(x)
考题
设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是( )。
A. [f(x)/g(x)]>[f(a)/g(b)]
B. [f(x)/g(x)]>[f(b)/g(b)]
C. f(x)g(x)>f(a)g(a)
D. f(x)g(x)>f(b)g(b)
考题
已知函数f(x)=(1/2)e2x-ax,g(x)=6xlnx,,h(x)=2e2x-4/x,a>o,b≠0。
(1)求函数f(x)的最小值;(3分)
(2)求函数g(x)的单调区间;(3分)
(3)证明:函数h(x)在[1/2,1]上有且仅有l个零点。(4分)
考题
设函数f(x),g(x)是大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时有( )《》( )A.f(x)g(b)>f(b)g(x)
B.f(x)g(a)>f(a)g(x)
C.f(x)g(x)>f(b)g(b)
D.f(x)g(x)>f(a)g(a)
考题
F[x]中,有f(x)g(x)=h(x)成立,若将xy代替x可以得到什么?()A、f(xy)g(xy)=h(2xy)B、f(xy)g(xy)=h(xy)C、f(xy)+g(xy)=h(xy)D、[fx+gx]y=hxy
考题
在F[x]中,有f(x)+g(x)=h(x)成立,若将x用矩阵x+c代替,可以得到什么?()A、f(xc)+g(xc)=h(x+c)B、f(x+c)g(x+c)=ch(x)C、[f(x)+g(x)]c=h(x+c)D、f(x+c)+g(x+c)=ch(x)
考题
设F(x),G(x)是f(x)的两个原函数,则下面的结论不正确的是()。A、F(x)+C也是f(x)的原函数,C为任意常数B、F(x)=G(x)+C,C为任意常数C、F(x)=G(x)+C,C为某个常数D、F’(x)=G’(x)
考题
单选题在F[x]中,有f(x)+g(x)=h(x)成立,若将x用矩阵x+c代替,可以得到什么?()A
f(xc)+g(xc)=h(x+c)B
f(x+c)g(x+c)=ch(x)C
[f(x)+g(x)]c=h(x+c)D
f(x+c)+g(x+c)=ch(x)
考题
单选题设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是( )。[2018年真题]A
f(x)/g(x)>f(a)/g(b)B
f(x)/g(x)>f(b)/g(b)C
f(x)g(x)>f(a)g(a)D
f(x)g(x)>f(b)g(b)
考题
问答题设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。
考题
单选题F[x]中,有f(x)g(x)=h(x)成立,若将xy代替x可以得到什么?()A
f(xy)g(xy)=h(2xy)B
f(xy)g(xy)=h(xy)C
f(xy)+g(xy)=h(xy)D
[fx+gx]y=hxy
考题
判断题在F[x]中,有f(x)+g(x)=h(x)成立,若将x用矩阵A代替,将有f(A)+g(A)≠h(A)。A
对B
错
热门标签
最新试卷