网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

一组向量线性相关的充要条件是这组向量中每一个向量都是其余向量的线性组合。


参考答案和解析
该向量为零向量
更多 “一组向量线性相关的充要条件是这组向量中每一个向量都是其余向量的线性组合。” 相关考题
考题 设A为m×n矩阵,齐次线性方程组Ax=0仅有零解的充要条件是( )。A.A的列向量组线性无关 B.A的列向量组线性相关 C.A的行向量组线性无关 D.A的行向量组线性相关

考题 向量组α1,α2,…,αm(m≥2)线性相关的充要条件是( )。 A α1,α2,…,αm中至少有一个零向量 B α1,α2,…,αm中至少有两个向量成比例 C 存在不全为零的常数k1,k2,…,km,使k1α1+k2α2+…+kmαm=0 D α1,α2,…,αm中每个向量都能由其余向量线性表示

考题 设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是(  )。 A、矩阵A的任意两个列向量线性相关 B、矩阵A的任意两个列向量线性无关 C、矩阵A的任一列向量是其余列向量的线性组合 D、矩阵A必有一个列向量是其余列向量的线性组合

考题 求向量组的秩和一个极大无关组,并将其余向量表成该极大无关组的线性组合

考题 A.向量组(Ⅰ)与(Ⅱ)都线性相关 B.向量组(Ⅰ)线性相关 C.向量组(Ⅱ)线性相关 D.向量组(Ⅰ)与(Ⅱ)中至少有一个线性相关

考题 单选题设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是(  )。[2017年真题]A 矩阵A的任意两个列向量线性相关B 矩阵A的任意两个列向量线性无关C 矩阵A的任一列向量是其余列向量的线性组合D 矩阵A必有一个列向量是其余列向量的线性组合

考题 单选题A 矩阵A的任意两个列向量线性相关B 矩阵A的任意两个列向量线性无关C 矩阵A的任一列向量是其余向量的线性组合D 矩阵A必有一个列向量是其余列向量的线性组合

考题 单选题向量组α(→)1,α(→)2,…,α(→)s线性相关的充要条件是(  )。A α(→)1,α(→)2,…,α(→)s均为零向量B 其中有一个部分组线性相关C α(→)1,α(→)2,…,α(→)s中任意一个向量都能由其余向量线性表示D 其中至少有一个向量可以表为其余向量的线性组合

考题 单选题设向量组(Ⅰ):α1,α2,…,αr可由向量组(Ⅱ):β1,β2,…,βs线性表示,则(  ).A r<s时,向量组(Ⅱ)必线性相关B r>s时,向量组(Ⅱ)必线性相关C r<s时,向量组(Ⅰ)必线性相关D r>s时,向量组(Ⅰ)必线性相关

考题 单选题设A是n阶矩阵,若|A|=0,则(  )成立.A A的任一列向量是其余列向量的线性组合B 必有一列向量是其余向量的线性组合C 必有两列元素对应成比例D 必有一列元素全为O

考题 单选题n维向量组,α(→)1,α(→)2,…,α(→)s(3≤s≤n)线性无关的充要条件是(  )。A 存在一组不全为0的数k1,k2,…,ks,使kα(→)1+k2α(→)2+…+ksα(→)s≠0(→)B α(→)1,α(→)2,…,α(→)s中任意两个向量都线性无关C α(→)1,α(→)2,…,α(→)s中存在一个向量不能由其余向量线性表示D α(→)1,α(→)2,…,α(→)s中任何一个向量都不能由其余向量线性表示

考题 单选题设向量组的秩为r,则:()A 该向量组所含向量的个数必大于rB 该向量级中任何r个向量必线性无关,任何r+1个向量必线性相关C 该向量组中有r个向量线性无关,有r+1个向量线性相关D 该向量组中有r个向量线性无关,任何r+1个向量必线性相关

考题 单选题设A,B为满足AB=0(→)的任意两个非零矩阵,则必有(  )。A A的列向量组线性相关,B的行向量组线性相关B A的列向量组线性相关,B的列向量组线性相关C A的行向量组线性相关,B的行向量组线性相关D A的行向量组线性相关,B的列向量组线性相关