网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
当问题的规模n为1时,问题的解是什么?
参考答案和解析
f(n)
更多 “当问题的规模n为1时,问题的解是什么?” 相关考题
考题
分治法所能解决的问题一般具有的几个特征不包括()
A.该问题的规模缩小到一定的程度就可以容易地解决B.该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质C.利用该问题分解出的子问题的解不可以合并为该问题的解D.原问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题
考题
能采用递归描述的算法通常有这样的特征:为求解规模为N的问题,设法将它分解成规模较小的问题,然后从这些小问题的解很容易构造出大问题的解,并且这些规模较小的问题也能采用同样的分解和综合方法,分解成规模更小的问题,并从这些更小问题的解构造出规模较大问题的解。特别地,当规模N=1时,能直接得解。()
此题为判断题(对,错)。
考题
在某个算法时间复杂度递归式T(n)=T(n-1)+n,其中n为问题的规模,则该算法的渐进时间复杂度为( ),若问题的规模增加了16倍,则运行时间增加( )倍。A.(n) B.(nlgn) C.(n2) D.(n2lgn) A.16 B.64 C.256 D.1024
考题
某个算法的时间复杂度递归式T(n)=T(n-1)+n,其中n为问题的规模,则该算法的渐进时间复杂度为 ( ) ,若问题的规模增加了16倍,则运行时间增加 (请作答此空) 倍。A.16
B.64
C.256
D.1024
考题
某个算法的时间复杂度递归式T(n)=T(n-1)+n,其中n为问题的规模,则该算法的渐进时间复杂度为 (请作答此空) ,若问题的规模增加了16倍,则运行时间增加 ( ) 倍。A.O(n)
B.O(nlgn)
C.O(n2)
D.O(n2lgn)
考题
某个算法的时间复杂度递归式T(n)=T(n-1)+n,其中n为问题的规模,则该算法的渐进时间复杂度为(62),若问题的规模增加了16倍,则运行时间增加(63)倍。
A.16
B.64
C.256
D.1024
考题
已知算法A的运行时间函数为T(n)=8T(n/2)+n2,其中n表示问题的规模,另已知算法B的运行时间函数为T(n)=XT(n/4)+n2,其中n表示问题的规模。对充分大的n,若要算法B比算法A快,则X的最大值为( )。A.15
B.17
C.63
D.65
考题
某个算法的时间复杂度递归式T(n)=T(n-1)+n,其中n为问题的规模,则该算法的渐进时间复杂度为(62),若问题的规模增加了16倍,则运行时间增加(63)倍。
A.O(n)
B.O(nlgn)
C.O(n2)
D.O(n2lgn)
考题
已知对称形式原问题(MAX)的最优表中的检验数为(λ1,λ2,...,λn),松弛变量的检验数为(λn+1,λn+2,...,λn+m),则对偶问题的最优解为()A、-(λ1,λ2,...,λn)B、(λ1,λ2,...,λn)C、-(λn+1,λn+2,...,λn+m)D、(λn+1,λn+2,...,λn+m)
考题
分治法的设计思想是将一个难以直接解决的大问题分割成规模较小的子问题,分别解决子问题,最后将子问题的解组合起来形成原问题的解。这要求原问题和子问题()A、问题规模相同,问题性质相同B、问题规模相同,问题性质不同C、问题规模不同,问题性质相同D、问题规模不同,问题性质不同
考题
单选题分治法的设计思想是将一个难以直接解决的大问题分割成规模较小的子问题,分别解决子问题,最后将子问题的解组合起来形成原问题的解。这要求原问题和子问题()A
问题规模相同,问题性质相同B
问题规模相同,问题性质不同C
问题规模不同,问题性质相同D
问题规模不同,问题性质不同
考题
单选题已知对称形式原问题(MAX)的最优表中的检验数为(λ1,λ2,...,λn),松弛变量的检验数为(λn+1,λn+2,...,λn+m),则对偶问题的最优解为()A
-(λ1,λ2,...,λn)B
(λ1,λ2,...,λn)C
-(λn+1,λn+2,...,λn+m)D
(λn+1,λn+2,...,λn+m)
热门标签
最新试卷