网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
6、一平面简谐波沿x轴负方向传播.已知x = x0处质点的振动方程为 y=Acos(ωt+φ0).若波速为u,则此波的表达式为
A.y =Acos{ω[t-(x0-x)/u]+φ0}
B.y =Acos{ω[t-(x-x0)/u]+φ0}
C.y =Acos{ω[t+(x0-x)/u]+φ0}
D.y =Acos{ω[t+(x-x0)/u]+φ0}
参考答案和解析
D
更多 “6、一平面简谐波沿x轴负方向传播.已知x = x0处质点的振动方程为 y=Acos(ωt+φ0).若波速为u,则此波的表达式为A.y =Acos{ω[t-(x0-x)/u]+φ0}B.y =Acos{ω[t-(x-x0)/u]+φ0}C.y =Acos{ω[t+(x0-x)/u]+φ0}D.y =Acos{ω[t+(x-x0)/u]+φ0}” 相关考题
考题
一平面简谐波沿X轴正向传播,已知x=L(L<λ)处质点的振动方程为y=Acosωt,波速为u,那么x=0处质点的振动方程为( )。A.y=Acosω(t+L/u)
B.y=Acosω(t-L/u)
C.y=Acos(ωt+L/u)
D.y=Acos(ωt-L/u)
考题
一平面简谐波沿x轴正向传播,已知x=-5m处质点的振动方程为y=Acosπt, 波速为u=4m/s,则波动方程为:
A. y=Acos[t-(x-5)/4]
B. y=Acos[t+(x+5)/4]
C. y=Acos[t-(x+5)/4]
D. y=Acos[t+(x-5)/4]
考题
一振幅为A、周期为T、波长为λ平面简谐波沿x负向传播,在x=λ/2处,t=T/4时振动相位为π,则此平面简谐波的波动方程为:
A. y = Acos(2πt/T-2πx/λ-π/2)
E. y = Acos(2πt/T+2πx/λ+π/2)
C. y = Acos(2πt/T+2πx/λ-π/2)
D. y = Acos(2πt/T-2πx/λ+π/2)
考题
一简谐波沿x轴正向传播,波的振幅为A,角频率为ω,波速为u。若以原点处的质元经平衡位置正方向运动时作为计时的起点,则该波的波动方程是( )。A.y=Acos[ω(t-x/u)+π/2]
B.y=Acos[ω(t-x/u)-π/2]
C.y=Acos[ω(t-x/u)+π]
D.y=Acos[ω(t-x/u)-π/3]
考题
一平面简谐波沿X轴正向传播,已知x=L(L0),波速为u,那么x=0处质点的振动方程为:
A. y=Acos[w(t+l/u)+Φ0]
B.y=Acos[w(t-l/u)+Φ0]
C. y=Acos[wt+l/u+Φ0]
D. y=Acos[wt-l/u+Φ0]
考题
一平面简谐波沿x轴正向传播,已知x=L(L<λ)处质点的振动方程为y=Acoswt,波速为u,那么x=0处质点的振动方程为( )。A.y=Acosw(t+L/u)
B.y=Acosw(t-L/u)
C.y=Acos(wt+L/u)
D.y=Acos(wt+L/u)
考题
一平面简谐波沿X轴正向传播,已知x=1(1λ)处质点的振动方程为y=Acoswt+φ0),波速为u,那么x=0处质点的振动方程为:()A、y=Acos[w(t+1/u)+φ0]B、y=ACOS[w(t-1/u)+φ0]C、y=Acos[wt+1/u+φ0]D、y=Acos[wt-1/u+φ0]
考题
一平面简谐波沿z轴正向传播,已知x=L(Lλ)处质点的振动方程为Y=Acoswt,波速为u,那么x=0处质点的振动方程为()。A、y=Acos(wt+L/u)B、y=Acos(wt-L/u)C、y=Acosw(t+L/u)D、y=Acosow(t-L/u)
考题
一平面简谐波沿X轴正向传播,已知x=L(Lλ)处质点的振动方程为y=Acos(∞t+φ0),波速为u,那么x=0处质点的振动方程为:()A、y=Acos[ω(t+L/u)+φ0]B、y=Acos[ω(t-L/u)+φ0]C、y=Acos[ωt+L/u+φ0]D、y=Acos[ωt-L/u+φ0]
考题
一振幅为A、周期为T、波长为λ平面简谐波沿X负向传播,在X=(1/2)λ处,t=T/4时振动相位为π,则此平面简谐波的波动方程为:()A、y=Acos(2πt/T-2πx/λ-1/2π)B、y=Acos(2πt/T+2πx/λ+1/2π)C、y=Acos(2πt/T+2πx/λ-1/2π)D、y=Acos(2πt/T-2πx/λ+1/2π)
考题
一平面简谐波沿x轴正向传播,已知x=L(Lλ)处质点的振动方程为y=Acosωt,波速为u,则波动方程为()A、y=Acosω[t-(x-L)/u]B、y=Acosω[t-(x+L)/u]C、y=Acosω[t+(x+L)/u]D、y=Acosω[t+(x-L)/u]
考题
一平面简谐波沿X轴正向传播,已知x=L(Lλ)处质点的振动方程为y=Acosωt,波速为u,那么x=0处质点的振动方程为()。A、y=Acosω(t+L/u)B、y=Acosω(t-L/u)C、y=Acos(ωt+L/u)D、y=Acos(ωt-L/u)
考题
一平面简谐波沿x轴正向传播,已知x=-5m处质点的振动方程为y=Acosπt,波速为u=4m/s,则波动方程为:()A、y=Acosπ[t-(x-5)/4]B、y=Acosπ[t-(x+5)/4]C、y=Acosπ[t+(x+5)/4]D、y=Acosπ[t+(x-5)/4]
考题
单选题一平面简谐波沿X轴正向传播,已知x=L(Lt,波速为u,那么x=0处质点的振动方程为()。A
y=Acosω(t+L/u)B
y=Acosω(t-L/u)C
y=Acos(ωt+L/u)D
y=Acos(ωt-L/u)
考题
单选题一质点t=0时刻位于最大位移处并沿y方向作谐振动,以此振动质点为波源,则沿x轴正方向传播、波长为λ的横波的波动方程可以写为()。A
y=Acos(2πt/T-π/2-2πx/λ)B
y=Acos(2πt/T-π/2+2πx/λ)C
y=Acos(2πt/T+π/2-2πx/λ)D
y=Acos(2πt/T+π/2πx/λ)
考题
单选题一平面简谐波以μ的速率沿x轴正向传播,角频率为ω,那么,距原点x处(x0)质点的振动相位总是比原点处质点的振动相位()。A
滞后ωx/μB
滞后x/μC
超前ωx/μD
超前x/μ
考题
单选题一平面简谐波沿z轴正向传播,已知x=L(Lλ)处质点的振动方程为Y=Acoswt,波速为u,那么x=0处质点的振动方程为()。A
y=Acos(wt+L/u)B
y=Acos(wt-L/u)C
y=Acosw(t+L/u)D
y=Acosow(t-L/u)
考题
单选题一平面简谐波沿X轴正向传播,已知x=L(L0),波速为u,那么x=0处质点的振动方程为:()A
y=Acos[ω(t+L/u)+φ0]B
y=Acos[ω(t-L/u)+φ0]C
y=Acos[ωt+L/u+φ0]D
y=Acos[ωt-L/u+φ0]
考题
单选题一平面简谐波沿X轴正向传播,已知x=1(10),波速为u,那么x=0处质点的振动方程为:()A
y=Acos[w(t+1/u)+φ0]B
y=ACOS[w(t-1/u)+φ0]C
y=Acos[wt+1/u+φ0]D
y=Acos[wt-1/u+φ0]
考题
单选题一平面简谐波沿X轴正向传播,已知x=1(1λ)处质点的振动方程为y=Acoswt+φ0),波速为u,那么x=0处质点的振动方程为:()A
y=Acos[w(t+1/u)+φ0]B
y=ACOS[w(t-1/u)+φ0]C
y=Acos[wt+1/u+φ0]D
y=Acos[wt-1/u+φ0]
考题
单选题一平面简谐波沿x轴正向传播,已知x=L(Lλ)处质点的振动方程为y=Acosωt,波速为u,则波动方程为()A
y=Acosω[t-(x-L)/u]B
y=Acosω[t-(x+L)/u]C
y=Acosω[t+(x+L)/u]D
y=Acosω[t+(x-L)/u]
考题
单选题一平面简谐波沿x轴正向传播,已知x=-5m处质点的振动方程为y=Acosπt,波速为u=4m/s,则波动方程为()。A
y=Acosπ[t-(x-5)/4]B
y=Acosπ[t-(x+5)/4]C
y=Acosπ[t+(x+5)/4]D
y=Acosπ[t+(x-5)/4]
考题
单选题平面简谐波沿x轴正方向传播,其振幅为A,频率为v,设t=t 0时刻的波形如图所示,则x=0处质点的振动方程是()。A
y=Acos[2πv(t+t 0)+π/2]B
y=Acos[2πv(t-t 0)+π/2]C
y=Acos[2πv(t-t 0)-π/2]D
y=Acos[2πv(t-t 0)+π]
热门标签
最新试卷