网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
函数f(x)和h(x)在x趋向于正无穷大时极限存在,并且对任意的x,总有f(x)<g(x)<h(x)成立,那么g(x)在x趋向于无正穷大时极限是存在的
参考答案和解析
错误
更多 “函数f(x)和h(x)在x趋向于正无穷大时极限存在,并且对任意的x,总有f(x)<g(x)<h(x)成立,那么g(x)在x趋向于无正穷大时极限是存在的” 相关考题
考题
设f(x),g(x),h(x)均为奇函数,则()中所给定的函数是偶函数。
A、f(x)g(x)h(x)B、[f(x)+g(x)]h(x)C、f(x)+g(x)D、f(x)+g(x)+h(x)
考题
设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是( )。
A. [f(x)/g(x)]>[f(a)/g(b)]
B. [f(x)/g(x)]>[f(b)/g(b)]
C. f(x)g(x)>f(a)g(a)
D. f(x)g(x)>f(b)g(b)
考题
已知函数
(1)求f(x)单调区间与值域;
(2)设a≥1,函数g(x)=x3-3a2x-2a,x∈[0,1]。若对于任意x1∈[0,1],总存在x0∈[0,1]使g(x0)=f(x1)成立,求a的取值范围。
考题
在F[x]中,有f(x)+g(x)=h(x)成立,若将x用矩阵x+c代替,可以得到什么?()A、f(xc)+g(xc)=h(x+c)B、f(x+c)g(x+c)=ch(x)C、[f(x)+g(x)]c=h(x+c)D、f(x+c)+g(x+c)=ch(x)
考题
设F(x),G(x)是f(x)的两个原函数,则下面的结论不正确的是()。A、F(x)+C也是f(x)的原函数,C为任意常数B、F(x)=G(x)+C,C为任意常数C、F(x)=G(x)+C,C为某个常数D、F’(x)=G’(x)
考题
带余除法中设f(x),g(x)∈F[x],g(x)≠0,那么F[x]中使f(x)=g(x)h(x)+r(x)成立的h(x),r(x)有几对?()A、无数多对B、两对C、唯一一对D、根据F[x]而定
考题
设g(x),f(x)∈F[x],存在d(x)∈F[x],有d(x)|f(x)且d(x)|g(x),那么称d(x)为f(x),g(x)的什么?()A、公因式B、最大公因式C、最小公因式D、共用函数
考题
单选题带余除法中设f(x),g(x)∈F[x],g(x)≠0,那么F[x]中使f(x)=g(x)h(x)+r(x)成立的h(x),r(x)有几对?()A
无数多对B
两对C
唯一一对D
根据F[x]而定
考题
单选题设g(x),f(x)∈F[x],存在d(x)∈F[x],有d(x)|f(x)且d(x)|g(x),那么称d(x)为f(x),g(x)的什么?()A
公因式B
最大公因式C
最小公因式D
共用函数
考题
单选题设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是( )。[2018年真题]A
f(x)/g(x)>f(a)/g(b)B
f(x)/g(x)>f(b)/g(b)C
f(x)g(x)>f(a)g(a)D
f(x)g(x)>f(b)g(b)
考题
判断题在F[x]中,有f(x)+g(x)=h(x)成立,若将x用矩阵A代替,将有f(A)+g(A)≠h(A)。A
对B
错
热门标签
最新试卷