网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

证明一个齐次线性方程组的任一个线性无关解向量组都可扩充成它的一个基础解系


参考答案和解析
正确
更多 “证明一个齐次线性方程组的任一个线性无关解向量组都可扩充成它的一个基础解系” 相关考题
考题 线性方程组Ax=o只有零解的充分必要条件是() A、A的行向量组线性无关B、A的行向量组线性相关C、A的列向量组线性无关D、A的列向量组线性相关

考题 设A为n阶方阵,r(A)n,下列关于齐次线性方程组Ax=0的叙述正确的是() A、Ax=0只有零解B、Ax=0的基础解系含r(A)个解向量C、Ax=0的基础解系含n-r(A)个解向量D、Ax=0没有解

考题 设n元齐次线性方程组Ax=o,r(A)=rn,则基础解系含有解向量的个数n个。() 此题为判断题(对,错)。

考题 矩阵A是m×n矩阵,齐次线性方程组AX=0只有零解的充要条件是A的列向量线性无关。() 此题为判断题(对,错)。

考题 设A是4×6矩阵,r(A)=2,则齐次线性方程组Ax=0的基础解系中所含向量的个数是( )A.1 B.2C.3 D.4

考题 非齐次线性方程组任意两个解之差为对应系数的齐次线性方程组的解。()

考题 设A为m×n阶矩阵,则齐次线性方程组AX=0只有零解的充分必要条件是(64)。A.A的列向量组线性无关B.A的列向量组线性相关C.A的行向量组线性无关D.A的行向量组线性相关A.A的列向量组线性无关B.A的列向量组线性相关C.A的行向量组线性无关D.A的行向量组线性相关

考题 A.不存在 B.仅含一个非零解向量 C.含有二个线性无关解向量 D.含有三个线性无关解向量

考题 齐次线性方程组AX=0若有两个不同的解,它就有无穷多个解

考题 设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系A.不存在. B.仅含一个非零解向量. C.含有两个线性无关的解向量. D.含有三个线性无关的解向量.

考题 A.不存在 B.仅含一个非零解向量 C.含有两个线性无关的解向量 D.含有三个线性无关的解向量

考题 设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是(  )。 A、矩阵A的任意两个列向量线性相关 B、矩阵A的任意两个列向量线性无关 C、矩阵A的任一列向量是其余列向量的线性组合 D、矩阵A必有一个列向量是其余列向量的线性组合

考题 求齐次线性方程组的基础解系

考题 设为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用线性表示,并且r(A)=n-3,证明{图2为AX=0的一个基础解系.}

考题 解齐次线性方程组:

考题 解非齐次线性方程组

考题 设齐次线性方程组      其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解,有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.

考题 已知非齐次线性方程组 有3个线性无关的解. (Ⅰ)证明方程组系数矩阵A的秩; (Ⅱ)求的值及方程组的通解

考题 设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)为,(Ⅱ)有一个基础解系(0,1,1,0)T,(-1,2,2,1)T.求(Ⅰ)和(Ⅱ)的全部公共解

考题 求出一个齐次线性方程组,使它的基础解系由向量组成

考题 已知齐次线性方程组(1)方程组仅有零解;(2)方程组有非零解,在有非零解时,求此方程组的一个基础解系.

考题 求齐次线性方程组的全部解(要求用基础解系表示)。

考题 齐次线性方程组的基础解系为( )。

考题 A.A的任意m个列向量必线性无关 B.A的任一个m阶子式不等于0 C.非齐次线性方程组AX=b一定有无穷多组解 D.A通过行初等变换可化为(Em,0)

考题 单选题设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是(  )。[2017年真题]A 矩阵A的任意两个列向量线性相关B 矩阵A的任意两个列向量线性无关C 矩阵A的任一列向量是其余列向量的线性组合D 矩阵A必有一个列向量是其余列向量的线性组合

考题 单选题设A为m×n矩阵,齐次线性方程组AX(→)=0(→)仅有零解的充分条件是(  )。A A的列向量组线性无关B A的列向量组线性相关C A的行向量组线性无关D A的行向量组线性相关

考题 单选题设矩阵Am×n的秩r(A)=m A A的任意m个列向量必线性无关B A的任一个m阶子式不等于0C 非齐次线性方程组AX=b一定有无穷多组解D A通过行初等变换可化为(Em,0)

考题 问答题设向量组α(→)1,α(→)2,…,α(→)s的秩为r>0,证明:  (1)α(→)1,α(→)2,…,α(→)s中任意r个线性无关的向量都构成它的一个极大线性无关组;  (2)若α(→)1,α(→)2,…,α(→)s中每个向量都可由其中某r个向量线性表示,则这r个向量必为α(→)1,α(→)2,…,α(→)s的一个极大线性无关组。