网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设齐次线性方程组
  
  其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解,有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.


参考答案

参考解析
解析:
更多 “设齐次线性方程组      其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解,有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.” 相关考题
考题 设n元齐次线性方程组AX=O只有零解,则秩(A)=()。

考题 设n元齐次线性方程组Ax=o,r(A)=rn,则基础解系含有解向量的个数n个。() 此题为判断题(对,错)。

考题 设A是4×6矩阵,r(A)=2,则齐次线性方程组Ax=0的基础解系中所含向量的个数是( )A.1 B.2C.3 D.4

考题 设α1,α2是非齐次线性方程组Ax=b的解.则A(5α2-4α1)=_________.

考题 非齐次线性方程组任意两个解之差为对应系数的齐次线性方程组的解。()

考题 齐次线性方程组AX=0若有两个不同的解,它就有无穷多个解

考题 设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。A.若Ax=0仅有零解,则Ax=b有惟一解 B.若Ax=0有非零解,则Ax=b有无穷多个解 C.若Ax=b有无穷多个解,则Ax=0仅有零解 D.若Ax=b有无穷多个解,则Ax=0有非零解

考题 设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系A.不存在. B.仅含一个非零解向量. C.含有两个线性无关的解向量. D.含有三个线性无关的解向量.

考题 设n元齐次线性方程组Ax=0的系数矩阵A的秩为r,则Ax=0有非零解的充要条件为( )。A.r=n B.r<n C.r≥n D.r>n

考题 设齐次线性方程组其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.

考题 求齐次线性方程组的基础解系

考题 解齐次线性方程组:

考题 解非齐次线性方程组

考题 设有齐次线性方程组      试问a为何值时,该方程组有非零解,并求其通解.

考题 写出一个以为通解的齐次线性方程组.

考题 已知齐次线性方程组 同解,求a,b,c的值.

考题 求出一个齐次线性方程组,使它的基础解系由向量组成

考题 问:齐次线性方程组有非零解时,a,b必须满足什么条件?

考题 求证:非齐次线性方程组无关。

考题 求齐次线性方程组的全部解(要求用基础解系表示)。

考题 齐次线性方程组的基础解系为( )。

考题 设A为矩阵,都是齐次线性方程组Ax=0的解,则矩阵A为( )。

考题 设A是4×6矩阵,则齐次线性方程组AX=0解的情况是()。A、无解B、只有零解C、有非零解D、不一定

考题 问答题设AX=0与BX=0均为n元齐次线性方程组,秩r(A)=r(B),且方程组AX=0的解均为方程组BX=0的解,证明方程组AX=0与BX=0同解.

考题 单选题设A是m×n矩阵,则m<n是齐次线性方程组ATAX(→)=0(→)有非零解的(  )。A 必要条件B 充分条件C 充要条件D 以上都不对

考题 填空题设A为n阶方阵,则n元齐次线性方程组AX(→)=0(→)仅有零解的充要条件是|A|____。

考题 单选题设A为n阶方阵,则n元齐次线性方程组AX(→)=0(→)仅有零解的充要条件是|A|(  )。A =0B ≠0C =1D ≠1