网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

假设某公司短期的生产函数为Q=72L+15L2-L3,其中Q、L分别代表一定时间内的产量和可变要素的投入量,求(1)导出AP1和MP1的函数;(2)当L=7时,MP1时多少?(3)当L由7个单位增加到8个单位的时候,产量增加多少?(4)L的投入量多大时,MP1将面临递减?(5)该公司的最大的产量时多少?为了达到这个最大的产量,L的投入量时多少?


参考答案和解析
(1)根据AP=Q/L和已知的生产函数可以得出,AP=72+15L-L 2 。 根据MP=dQ/dL和已知的生产函数可以得出, MP=72+30L-3L 2 。 (2)将L=7代人边际产量函数,可得出MP=135。 (3)将L=7和L=8分别代人生产函数求出两个总产量,二者的差额即为产量增量,为128。 (4)M'=0时,其面临递减,则可以求出L=5。 (5)MP=0时,TP最大,因此可以得出L=12。再代入TP函数,即可以得出最大的产量为1296
更多 “假设某公司短期的生产函数为Q=72L+15L2-L3,其中Q、L分别代表一定时间内的产量和可变要素的投入量,求(1)导出AP1和MP1的函数;(2)当L=7时,MP1时多少?(3)当L由7个单位增加到8个单位的时候,产量增加多少?(4)L的投入量多大时,MP1将面临递减?(5)该公司的最大的产量时多少?为了达到这个最大的产量,L的投入量时多少?” 相关考题
考题 计算题:假定某厂商只有一种可变要素劳动L,产出一种产品Q,固定成本为既定,短期生产函数Q=-0。1L3+6L2+12L,求:(1)劳动的平均产量AP为最大值时的劳动人数(2)劳动的边际产量MP为最大值时的劳动人数(3)平均可变成本极小值时的产量

考题 计算题:设某厂商只把劳动作为可变要素,其生产函数为Q=-0.01L3+L2+36L,Q为厂商每天产量,L为工人的日劳动小时数。所有市场均为完全竞争的,单位产品价格为0.10美元,小时工资率为4.8美元,试求当厂商利润极大时:(1)厂商每天将投入多少劳动小时?(2)如果厂商每天支付的固定成本为50美元,厂商每天生产的纯利润为多少?

考题 已知某企业的生产函数Q=L2/3K1/3 ,劳动的价格W=2,资本的价格r=1,求:(1)当成本C=3000时,企业实现最大产量时的L、K和Q的值。(2)当产量Q=800时,企业实现最少成本时的L、K和C的值。

考题 已知生产函数Q=-L3+24L2+240L,求:在生产的三个阶段上,L的投入量分别应为多少?

考题 生产函数Q=f(L,K)的要素组合与产量的对应图,如图所示,这张图是以坐标平面的形式编制的。其中,横轴和纵轴分别表示劳动投入量和资本投入量,虚线交点上的数字表示与该点的要素投入组合对应的产量。(1)图中是否存在规模报酬递增、不变和递减?(2)图中是否存在边际报酬递减?(3)图中哪些要素组合处于同一条等产量曲线上?

考题 已知生产函数Q=f(L,K)=2KL-0.5L2-0.5K2,假定厂商目前处于短期生产,且K=10,求:(1)写出在短期生产中该厂商关于劳动的总产量TPL函数、劳动的平均产量APL函数和劳动的边际产量MPL函数。(2)分别计算当总产量TPL、劳动平均产量APL和劳动边际产量MPL各自达到极大值时的厂商劳动的投入量。(3)什么时候APL=MPL?它的值又是多少?

考题 假定某厂商的短期生产函数为Q(L)=6L-0.5L^2,则短期产量最大时L的投入量为()。 A.6B.3C.9D.8

考题 生产函数Q=3L+4K(其中Q为产量,L、K分别为劳动和资本的投入量)的规模报酬()。 A.递增B.递减C.不变D.先增后减

考题 已知某厂商使用L和K两种要素生产一种产品,其固定替代比例的生产函数为Q=4L+3K (1)作出等产量曲线。 (2)边际技术替代率是多少? (3)讨论其规模报酬情况。 (4)令PL=5、PK =3,求C=90时的K、L值以及最大产量。 (5)令PL =3、PK =3,求C=90时的K、L值以及最大产量。 (6)令PL =4、PK =3,求C=90时的K、L值以及最大产量。 (7)比较(4)、(5)和(6),你得到什么结论?

考题 已知生产函数为Q =f(K,L)=KL -0. 5L2-0.32K2,Q表示产量,K表示资本,L表示劳动,若K =10,求: (1)写出劳动的平均产量和边际产量函数。 (2)计算当总产量达到极大值时企业雇佣的劳动人数。

考题 已知生产函数Q=f(L,K)=2KL-0.5L2-0.5K2,假定厂商目前处于短期生产切K的平均数为10 (1)写出在短期生产中该厂商关于劳动的总产量TPL函数、关于劳动的平均产量APL函数和关于劳动的边际产量MPL函数。 (2)分别计算当劳动的总产量TPL、劳动的平均产量APL和劳动的边际产量MPL各自达到最大值时的厂商的劳动投入量。 (3)什么时候APL= MPL?它的值又是多少?

考题 假定在短期生产的固定成本给定的条件下,某厂商使用一种可变要素L生产一种产品,其短期总成本函数为STC =5Q3 -18Q2 +100Q +160. 求:当产量Q为多少时,成本函数开始呈现出边际产量递减特征?

考题 假设某厂商的短期生产函数为Q=35L+8L2-L3 求:(1)该企业的平均产量函数和边际产量函数。 (2)如果企业使用的生产要素的数量为/=6,是否处于短期生产的合理区间?为什么?

考题 已知生产函数Q=min{2L,3K},求: (1)当产量Q=36时,L与K值分别是多少? (2)如果生产要素的价格分别为PL =2、PK =5,则生产480单位产量时的最小成本是多少?

考题 已知某厂商的固定投入比例的生产函数为Q=min{2L,3K} (1)令PL =1、PK =3,求厂商为了生产120单位产量所使用的K、L值以及最小成本。如果要素价格变化为PL =4、PK =2,厂商为了生产120单位产量所使用的K、L值以及最小成本又是多少?请予以比较与说明。 (2)令PL =4、PK =3,求C=180时的K、L值以及最大产量。

考题 已知某企业的生产函数为Q=,L^(2/3)K^(1/3),劳动的价格,w=2,资本的价格r =1:求 (1)当成本C=3000时,企业实现最大产量时的L、K和Q的均衡值。 (2)当产量Q=800时,企业实现最小成本时的L、K和C的均衡值:

考题 已知生产函数为Q= KL -0.5L2-0.32K2;其中,Q表示产量,K表示资本.L表示劳动,令式中K=10,求: (1)写出劳动的平均产量(APPL)函数和边际产量(MPPL)函数。 (2)分别计算当总产量、平均产量和边际产量达到极大值时厂商雇佣的劳动。 (3)求上述条件下厂商总产量、平均产量和边际产量的极大值。

考题 设一厂商使用的可变要素为劳动L,其生产函数为Q= -O. O1L3+L2+38L 其中,Q为每日产量,L为每日投入的劳动小时数,所有市场(劳动市场及产品市场)都是完全竞争的,单位产品价格为0. 10美元,小时工资为5美元,厂商要求利润最大化。问厂商每天雇用多少小时的劳动?

考题 某企业生产一种产品,劳动为唯一可变要素,固定成本既定。短期生产函数Q=-0.1L3+6L22+12L,求: (1)劳动的平均产量函数和边际产量函数。 (2)企业雇用工人的合理范围是多少? (3)若已知劳动的价格为W=480,产品Q的价格为40,则当利润最大时,企业生产多少产品Q?

考题 设某厂商品总产量函数为TPL=72L+15L2-L3,求: (1)当L=7时,边际产量MPL是多少? (2)L的投入量为多大时,边际产量MP将开始递减?

考题 某企业使用劳动L和资本K进行生产,长期生产函数为Q=20L+65K-0.5L2-0.5K2,每期总成本TC=2200元,要素价格w=20元,r=50元。求企业最大产量,以及L和K地投入量。

考题 某企业的生产函数为Q=0.25KL。K是投入的资本量,L是投入的劳动量,使用资本的价格为8,劳动的价格为2。若产量为144,有效投入的资本和劳动量应为多少?可能的最低成本为多大?

考题 已知生产函数Q=f(L,K)=4KL-L2-0.25K2,假定厂商目前处于短期生产,且K=20。 (1)写出在短期生产中该厂商关于劳动的总产量TPL函数、劳动的平均产量APL函数和劳动的边际产量MPL函数。 (2)分别计算当劳动的总产量TPL、劳动的平均产量APL和劳动的边际产量MPL各自达到极大值时的厂商的劳动投入量。 (3)什么时候APL=MPL?它的值又是多少?

考题 问答题某企业的生产函数为Q=0.25KL。K是投入的资本量,L是投入的劳动量,使用资本的价格为8,劳动的价格为2。若产量为144,有效投入的资本和劳动量应为多少?可能的最低成本为多大?

考题 问答题假定某公司甲的生产函数为:Q=10K0.5L0.5;另一家公司乙的生产函数为:Q=10K0.6L0.4。其中Q为产量,K和L分别为资本和劳动的投入量。  (1)如果两家公司使用同样多的资本和劳动,哪一家公司的产量大?  (2)如果资本的投入限于9单位,而劳动的投入没有限制,哪家公司劳动的边际产量更大?

考题 问答题已知某厂商的生产函数为Q=0.5L1/3K2/3;当资本投入量K=50时资本的总价值为500;劳动的价格PL=5。求:  (1)劳动的投入函数L=L(Q);  (2)总成本函数、平均成本函数和边际成本函数;  (3)当产品的价格P=100时,厂商获得最大利润的产量和利润各是多少?

考题 问答题已知企业的生产函数为Q=F(L,K)=LK-0.5L2-0.32K2,Q表示产量,K表示资本,L表示劳动,令K=10。试求劳动的平均产量函数(AP1)和边际产量函数(MP1)。

考题 问答题已知生产函数为Q=min(L,4K)。试求:(1)当产量Q=32时,L与K值分别是多少?(2)如果生产要素的价格分别为PL=2,Pk=5,则生产100单位产量时的最小成本是多少?