网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
若线性方程组Ax = b的系数矩阵A为严格对角占优矩阵,则解方程组的Jacobi迭代法和Gauss-Seidel迭代法 ___________.
A.都发散
B.都收敛
C.Jacobi迭代法收敛,Gauss-Seidel迭代法发散
D.Jacobi迭代法发散,Gauss-Seidel迭代法收敛
参考答案和解析
B由于秩r()=r(A)=2
更多 “若线性方程组Ax = b的系数矩阵A为严格对角占优矩阵,则解方程组的Jacobi迭代法和Gauss-Seidel迭代法 ___________.A.都发散B.都收敛C.Jacobi迭代法收敛,Gauss-Seidel迭代法发散D.Jacobi迭代法发散,Gauss-Seidel迭代法收敛” 相关考题
考题
设有齐次线性方程组Ax=0和Bx=0, 其中A,B均为 矩阵,现有4个命题: ① 若Ax=0的解均是Bx=0的解,则秩(A) 秩(B); ② 若秩(A) 秩(B),则Ax=0的解均是Bx=0的解; ③ 若Ax=0与Bx=0同解,则秩(A)=秩(B); ④ 若秩(A)=秩(B), 则Ax=0与Bx=0同解
A.① ②
B.① ③
C.② ④
D.③ ④
考题
非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则A.r=m时,方程组A-6有解.
B.r=n时,方程组Ax=b有唯一解.
C.m=n时,方程组Ax=b有唯一解.
D.r
考题
设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。A.若Ax=0仅有零解,则Ax=b有惟一解
B.若Ax=0有非零解,则Ax=b有无穷多个解
C.若Ax=b有无穷多个解,则Ax=0仅有零解
D.若Ax=b有无穷多个解,则Ax=0有非零解
考题
设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系A.不存在.
B.仅含一个非零解向量.
C.含有两个线性无关的解向量.
D.含有三个线性无关的解向量.
考题
设A是m×n阶矩阵,下列命题正确的是().A.若方程组AX=0只有零解,则方程组AX=b有唯一解
B.若方程组AX=0有非零解,则方程组AX=b有无穷多个解
C.若方程组AX=b无解,则方程组AX=0一定有非零解
D.若方程组AX=b有无穷多个解,则方程组AX=0一定有非零解
考题
非齐线性方程组AX=b中未知量的个数为n,方程的个数为m,系数矩阵A的秩为r,则( )。A 当r=m时,方程组AX=b有解
B 当r=n时,方程组AX=b有惟一解
C 当m=n时,方程组AX=b有惟一解
D 当r<n时,方程组AX=b有无穷多解
考题
非齐次线性方程组AX=b中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则( ).A.r=m时,方程组AX=b有解
B.r=n时,方程组AX=b有唯一解
C.m=m时,方程组AX=b有唯一解
D.r<n时,方程组AX=b有无穷多解
考题
单选题非齐次线性方程组AX(→)=b(→)中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则( )。A
r=m时,方程组AX(→)=b(→)有解B
r=n时,方程组AX(→)=b(→)有唯一解C
m=n时,方程组AX(→)=b(→)有唯一解D
r<n时,方程组AX(→)=b(→)有无穷多解
热门标签
最新试卷