网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

下面的几种图形中,()不是轴对称图形。

A.等腰三角形

B.平行四边形

C.一条线段

D.无


参考答案和解析
图一;图二;图四
更多 “下面的几种图形中,()不是轴对称图形。A.等腰三角形B.平行四边形C.一条线段D.无” 相关考题
考题 下列几何图形中,既是轴对称图形又是中心对称图形的是A.等边三角形B.矩形C. 平行四边形D.等腰梯形

考题 下列平面图形中,即是轴对称图形又是中心对称图形的是( )A.AB.BC.CD.D

考题 学生在学习正方形、长方形、三角形时已形成了轴对称图形概念,在学习圆时,学生立即就能发现圆具有轴对称图形的一切特征,从而得出“圆也是轴对称图形”的结论。这一学习属于()。A.符号学习 B.并列结合学习 C.下位学习 D.上位学习

考题 下列图形中,是中心对称图形但不是轴对称图形的是(  ).

考题 如下所示的四个设计图中,哪一个是轴对称图形?()

考题 初中数学《轴对称现象》 一、考题回顾 题目来源1月6日 下午 黑龙江省哈尔滨市 面试考题 试讲题目1.题目:轴对称现象 2.内容: ? 3.基本要求: (1)有板书设计。 (2)发现生活中的轴对称图形,体会轴对称图形的含义。 (3)教学中注意条理清晰,重点突出。 (4)请在10分钟内完成试讲内容。 答辩题目1.为什么要学习轴对称现象? 2.在本节课的教学过程中,你是如何设计探究轴对称现象的? 二、考题解析 【教学过程】 (一)导入新课 教师描述:同学们,上课之前老师给大家讲一个小故事。(播放动画)在小河边的花丛中,有一只美丽的蝴蝶正在采花蜜。忽然!来了一只蜻蜓在它面前飞来飞去,蝴蝶生气的说“谁在跟我捣乱?”蜻蜓笑嘻嘻地说“你怎么连一家人都不认识了,我是来找你玩的。”这时蝴蝶更生气了,说道:“你是蜻蜓,我是蝴蝶,我们怎么可能是一家人呢?”于是,蜻蜓就落在了旁边的一片叶子上,说:“这你就不知道了吧,不仅蜻蜓、蝴蝶是一家,有些树叶,还有我们身边的很多物体都和我们是一家呢。”故事讲完了,同学们你们明白蜻蜓说的话吗? 预设:学生们议论纷纷却理解不了蜻蜓话中含义,到这里学生遇到瓶颈,我将顺势引出课题,本节课来学习《轴对称现象》。 (二)生成新知 活动一:让学生举出一些生活中轴对称图形的例子,检验学生对于轴对称图形本质特征的认识情况。之后通过大屏幕呈现若干轴对称图形,引导学生去观察,再类比之前所学的内容概括出这些图形的共同特征。 提问:这些美丽的图形来自生活,认真观察这些图形有什么共同特征?用自己的语言来描述。 预设:图形左右两部分对称。 追问:你能将图中的窗花沿某条直线对折,使直线两旁的部分完全重合吗?其他图形呢? 预设:都能找到一条线使左右完全重合。 活动二:小组讨论。通过观察,引导学生进行归纳验证,并动手操作“折纸”实验,总结得出轴对称图形和对称轴的相关概念。 预设:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。 活动三:请大家拿出准备好的图形,动手折一折、画一画,找出它们的对称轴,有几条呢? ? 预设:圆有无数条对称轴,等边三角形有三条对称轴。 引导学生注意观察自己动手折过的图形以及所画的对称轴,看能不能有什么发现?在同桌交流的基础上,适时引导学生进行归纳总结,得出轴对称的概念:如果一个图形沿着一条直线翻折,能够与另一个图形完全重合,我们称这两个图形关于这条直线成轴对称,这条直线就叫对称轴。 (三)应用新知 1.观察下面的图形,哪些图形是轴对称图形?画出对称轴。 ? 2.展示活动:自己设计一个优美的轴对称图案。 (四)小结作业 小结:通过这节课的学习,你有什么收获? 作业:找一找语文汉字中哪些字是轴对称图形? 【板书设计】 轴对称现象 轴对称图形: 对称轴: 轴对称: 1.为什么要学习轴对称现象? 2.在本节课的教学过程中,你是如何设计探究轴对称现象的?

考题 轴对称图形和两个图形成轴对称的区别和联系是什么?【数学专业问题】

考题 下列四个图形中,既是轴对称图形又是中心对称图形的有( )。 A.4个 B.3个 C.2个 D.1个

考题 谈谈你对内容标准中“认识并欣赏自然界和现实生活中的轴对称、中心对称图形,运用图形的轴对称、旋转、平移进行图案设计”要求的认识。

考题 下列图形中,既是轴对称图形,又是中心对称图形的是( )

考题 在角、等边三角形、矩形和双曲线四个图形中,既是轴对称图形又是中心对称图形的有(  )。 A.1个 B.2个 C.3个 D.4个

考题 下列说法中,不正确的是(  )。A.轴对称图形的对称轴是连接对称点线段的垂直平分线 B.中心对称图形的对称中心也是连接对称点线段的中点 C.矩形是以对角线为对称轴的轴对称图形 D.线段是以其中点为对称中心的中心对称图形

考题 若一个四边形,既是轴对称图形,又是中心对称图形,那么该图形一定是()A、菱形B、平行四边形C、等腰梯形

考题 悖论图形主要包括()几种形式。A、减缺图形B、混维图形C、矛盾图形D、悖论图形E、异影图形

考题 在文档中绘制了多个图形时,这些图形会相互重叠,导致下面的图形被遮盖,需要下方图形显示至上方所要进行的操作是()。A、设置图形叠放层次B、组合对象C、设置图形样式D、设置图形大小

考题 三角形衣架是我们日常生活用品,这些衣架都是有两个角相等,这样形成了一个轴对称图形,这个轴对称图形只有一条()

考题 如果目前图形界面中的布局是BorderLayout,需要使新加入的组件位于图形界面的下部,应该调整()属性的值。A、alignmentxB、alignmentyC、constraintsD、以上都不是

考题 在进行放样时,当做路径的二维图形称为“路径”,用作横截面的二维图形称为“图形”,路径和图形都可以是()。A、封闭的B、开放的C、A和BD、以上都不是

考题 函数与它的反函数的几何图形关于Y轴对称。

考题 学习正方形中已经掌握的轴对称圆形后,学习时告诉图也是轴对称图形,学生立即发现图具有轴对称特征,这种学习方式是()A、上位学习B、相关类属C、派生类属D、并列类属

考题 如果一个图形绕着一个点旋转180°后,能够和原图形完全重合,那么这个图形就叫做(),这个点就是它的对称中心。A、轴对称图形B、中心对称图形C、对称图形

考题 聚集图形是以创意为中心,用多个元素进行形的组织。这种图形组织一般有()几种方式。A、散集图形B、增值图形C、悖论图形D、正负图形E、双关图形

考题 单选题学习正方形中已经掌握的轴对称圆形后,学习时告诉图也是轴对称图形,学生立即发现图具有轴对称特征,这种学习方式是()A 上位学习B 相关类属C 派生类属D 并列类属

考题 单选题若学生在学习正方形、长方形、三角形时已成形轴对称图形概念,在学习圆时,“圆也是轴对称图形”这一命题被纳入或类属于原有轴对称图形概念,新的命题很快就获得意义,学生立即能发现圆具有轴对称图形的一切特征这种概念学习的形式是()A 相关类属过程B 派生类属学习C 上位学习D 并列结合学习

考题 单选题如果一个图形绕着一个点旋转180°后,能够和原图形完全重合,那么这个图形就叫做(),这个点就是它的对称中心。A 轴对称图形B 中心对称图形C 对称图形

考题 单选题若一个四边形,既是轴对称图形,又是中心对称图形,那么该图形一定是()A 菱形B 平行四边形C 等腰梯形

考题 多选题聚集图形是以创意为中心,用多个元素进行形的组织。这种图形组织一般有()几种方式。A散集图形B增值图形C悖论图形D正负图形E双关图形

考题 多选题悖论图形主要包括()几种形式。A减缺图形B混维图形C矛盾图形D悖论图形E异影图形