网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
单选题
如果一个向量是其中两个向量的组合,则这两个向量一定()。
A

相交

B

垂直

C

处于同一平面

D

具有相反的方向


参考答案

参考解析
解析: 暂无解析
更多 “单选题如果一个向量是其中两个向量的组合,则这两个向量一定()。A 相交B 垂直C 处于同一平面D 具有相反的方向” 相关考题
考题 若向量a,b线性相关,则____。 A.a=kb或b=lAB.其中必有一个零向量C.两者必同时是零向量

考题 等价的两个线性无关向量组所含有向量的个数一定相等。() 此题为判断题(对,错)。

考题 如果方阵A是不可逆的,则一定有任意一个行向量是其余行向量的线性组合。() 此题为判断题(对,错)。

考题 向量处理机的基本思想是把两个向量的对应分量并行运算,产生一个结果向量。() 此题为判断题(对,错)。

考题 下述结论中,不正确的有() A.若向量a与β正交,则对任意实数a,b,aα与bβ也正交B.若向量β与向量a1,a2都正交,则β与a1,a2的任一线性组合也正交C.若向量a与正交,则a,β中至少有一个是零向量D.若向量a与任意同维向量正交,则a是零向量.

考题 设向量组Ⅰ可由向量组Ⅱ:线性表示,下列命题正确的是( ) A.若向量组Ⅰ线性无关,则r≤s B.若向量组Ⅰ线性相关,则r大于s C.若向量组Ⅱ线性无关,则r≤s D.若向量组Ⅱ线性相关,则r小于s

考题 设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是(  )。 A、矩阵A的任意两个列向量线性相关 B、矩阵A的任意两个列向量线性无关 C、矩阵A的任一列向量是其余列向量的线性组合 D、矩阵A必有一个列向量是其余列向量的线性组合

考题 求向量组的秩和一个极大无关组,并将其余向量表成该极大无关组的线性组合

考题 设向量组I:α1α2αr…,可由向量组Ⅱβ1,β2,…βs:线性表示,下列命题正确的是( )。A.若向量组I线性无关.则r≤S B.若向量组I线性相关,则r>s C.若向量组Ⅱ线性无关,则r≤s D.若向量组Ⅱ线性相关,则r>s

考题 A.一个解向量 B.两个解向量 C.三个解向量 D.四个解向量

考题 任意一个向量,如果它内部的各个元素均为非负数,且总和等于1,则该向量称之为()A、固定概率矩阵B、马尔柯夫向量C、概率向量D、概率矩阵

考题 向量:一个向量是由若干个标量组成的一个(),其中每个标量称为向量的一个分量。

考题 任意一个方阵,如果其各行都是概率向量,则该方阵称之为()A、固定概率矩阵B、马尔柯夫向量C、概率向量D、概率矩阵

考题 航线速度三角形的三个向量分别是()。A、V向量,U向量,W向量B、A向量,B向量,C向量C、X向量,Y向量,Z向量D、A向量,V向量,Y向量

考题 单选题设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是(  )。[2017年真题]A 矩阵A的任意两个列向量线性相关B 矩阵A的任意两个列向量线性无关C 矩阵A的任一列向量是其余列向量的线性组合D 矩阵A必有一个列向量是其余列向量的线性组合

考题 单选题A 矩阵A的任意两个列向量线性相关B 矩阵A的任意两个列向量线性无关C 矩阵A的任一列向量是其余向量的线性组合D 矩阵A必有一个列向量是其余列向量的线性组合

考题 单选题任意一个方阵,如果其各行都是概率向量,则该方阵称之为()A 固定概率矩阵B 马尔柯夫向量C 概率向量D 概率矩阵

考题 单选题向量组α(→)1,α(→)2,…,α(→)s线性相关的充要条件是(  )。A α(→)1,α(→)2,…,α(→)s均为零向量B 其中有一个部分组线性相关C α(→)1,α(→)2,…,α(→)s中任意一个向量都能由其余向量线性表示D 其中至少有一个向量可以表为其余向量的线性组合

考题 单选题设A是n阶矩阵,若|A|=0,则(  )成立.A A的任一列向量是其余列向量的线性组合B 必有一列向量是其余向量的线性组合C 必有两列元素对应成比例D 必有一列元素全为O

考题 单选题设n阶方阵A=(α(→)1,α(→)2,…,α(→)n),B=(β(→)1,β(→)2,…,β(→)n),AB=(γ(→)1,γ(→)2,…,γ(→)n),记向量组(Ⅰ):α(→)1,α(→)2,…,α(→)n;(Ⅱ): β(→)1,β(→)2,…,β(→)n;(Ⅲ):γ(→)1,γ(→)2,…,γ(→)n。如果向量组(Ⅲ)线性相关,则(  )。A 向量组(Ⅰ)与(Ⅱ)都线性相关B 向量组(Ⅰ)线性相关C 向量组(Ⅱ)线性相关D 向量组(Ⅰ)与(Ⅱ)中至少有一个线性相关

考题 单选题下列说法不正确的是(  )。A s个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则加入k个n维向量β(→)1,β(→)2,…,β(→)k后的向量组仍然线性无关B s个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则每个向量增加k维分量后得到的向量组仍然线性无关C s个n维向量α(→)1,α(→)2,…,α(→)s线性相关,则加入k个n维向量β(→)1,β(→)2,…,β(→)k后得到的向量组仍然线性相关D s个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则减少一个向量后得到的向量组仍然线性无关

考题 填空题向量:一个向量是由若干个标量组成的一个(),其中每个标量称为向量的一个分量。

考题 问答题设向量组α(→)1,α(→)2,…,α(→)s的秩为r>0,证明:  (1)α(→)1,α(→)2,…,α(→)s中任意r个线性无关的向量都构成它的一个极大线性无关组;  (2)若α(→)1,α(→)2,…,α(→)s中每个向量都可由其中某r个向量线性表示,则这r个向量必为α(→)1,α(→)2,…,α(→)s的一个极大线性无关组。

考题 单选题设向量组的秩为r,则:()A 该向量组所含向量的个数必大于rB 该向量级中任何r个向量必线性无关,任何r+1个向量必线性相关C 该向量组中有r个向量线性无关,有r+1个向量线性相关D 该向量组中有r个向量线性无关,任何r+1个向量必线性相关

考题 单选题任意一个向量,如果它内部的各个元素均为非负数,且总和等于1,则该向量称之为()A 固定概率矩阵B 马尔柯夫向量C 概率向量D 概率矩阵

考题 单选题设A,B为满足AB=0(→)的任意两个非零矩阵,则必有(  )。A A的列向量组线性相关,B的行向量组线性相关B A的列向量组线性相关,B的列向量组线性相关C A的行向量组线性相关,B的行向量组线性相关D A的行向量组线性相关,B的列向量组线性相关