网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
单选题
设则f(x)在点x=0处().
A
连续
B
左连续,且不连续
C
右连续,且不连续
D
既非左连续,也非右连续
参考答案
参考解析
解析:
暂无解析
更多 “单选题设则f(x)在点x=0处().A 连续B 左连续,且不连续C 右连续,且不连续D 既非左连续,也非右连续” 相关考题
考题
设f(x)在(-∞,+∞)二阶可导,f'(x0)=0。问f(x)还要满足以下哪个条件,则f(x0)必是f(x)的最大值?
A.x=x0是f(x)的唯一驻点
B.x=x0是f(x)的极大值点
C.f"(x)在(-∞,+∞)恒为负值
D.f"(x0)≠0
考题
设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )A.f(a)=0且f′(a)=0
B.f(a)=0且f′(a)≠0
C.f(a)>0且f′(a)>
D.f(a)<0且f′(a)<
考题
设y=f(x)是(a, b)内的可导函数,X,X+ΔX是(a, b)内的任意两点,则:
(A) Δy= f‘ (x)Ax
(B)在x,x+Ax之间恰好有一点ξ,使Δy=f'(ξ)Ax
(C)在x, x+Ax之间至少有一点ξ,使Δy=f'(ξ)Ax
(D)对于x,x+ax之间任意一点ξ,使Δy=f'(ξ)Ax
考题
下列命题中,正确的是( ).A.单调函数的导函数必定为单调函数
B.设f(x)为单调函数,则f(x)也为单调函数
C.设f(x)在(a,b)内只有一个驻点xo,则此xo必为f(x)的极值点
D.设f(x)在(a,b)内可导且只有一个极值点xo,f(xo)=0
考题
设y=f(x)是(a,b)内的可导函数,x,x+△x是(a,b)内的任意两点,则:
A. △y=f’(x)△x
B.在x,x+△x之间恰好有一点ξ,使△y=f’(ξ)△x
C.在x,x+△x之间至少存在一点ξ,使△y=f’(ξ)△x
D.在x,x+△x之间的任意一点ξ,使△y=f’(ξ)△x
考题
设f(x)在(-∞,+∞)二阶可导,f′(x0)=0。问f(x)还要满足以下哪个条件,则f(x0)必是f(x)的最大值()?A、x=x0是f(x)的唯一驻点B、x=x0是f(x)的极大值点C、f″(x)在(-∞,+∞)恒为负值D、f″(x0)≠0
考题
下列结论不正确的是()。A、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处连续B、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处可导C、z=f(x,y)在点(x0,y0)处可导,则f(x,y)在点(x0,y0)处可微D、z=f(x,y)在点(x0,y0)处偏导数连续,则f(x,y)在点(x0,y0)处连续
考题
下列结论不正确的是()。A、y=f(x)在点x0处可微,则f(x)在点x0处连续B、y=f(x)在点x0处可微,则f(x)在点x0处可导C、y=f(x)在点x0处连续,则f(x)在点x0处可微D、y=f(x)在点x0处可导,则f(x)在点x0处连续
考题
单选题设f(x)g(x)在x0处可导,且f(x0)=g(x0)=0,f′(x0)g′(x0)>0,f″(x0)、g″(x0)存在,则( )A
x0不是f(x)g(x)的驻点B
x0是f(x)g(x)的驻点,但不是它的极值点C
x0是f(x)g(x)的驻点,且是它的极小值点D
x0是f(x)g(x)的驻点,且是它的极大值点
考题
单选题(2009)设y=f(x)是(a,b)内的可导函数,x+△x是(a,b)内的任意两点,则:()A
△y=f′(x)△xB
在x,x+△x之间恰好有一点ξ,使△y=f′(ξ)△xC
在x,x+△x之间至少有一点ξ,使△y=f′(ξ)△xD
在x,x+△x之间任意一点ξ,使△y=f′(ξ)△x
考题
单选题设f(x)在(-∞,+∞)二阶可导,f(x0)=0。问f(x)还要满足以下哪个条件,则f(x0)必是f(x)的最大值?()A
x=x0是f(x)的唯一驻点B
x=x0是f(x)的极大值点C
f″(x)在(-∞,+∞)恒为负值D
f″(x)≠0
考题
单选题设y=f(x)满足关系式y″-2y′+4y=0,且f(x0)>0,f′(x0)=0,则f(x)在x0点处( )。A
取得极大值B
取得极小值C
在x0点某邻域内单调增加D
在x0点某邻域内单调减少
考题
单选题设函数z=f(x,y)的全微分为dz=xdx+ydy,则点(0,0)( )。A
不是f(x,y)的连续点B
不是f(x,y)的极值点C
是f(x,y)的极大值点D
是f(x,y)的极小值点
考题
单选题设f(x)在(-∞,+∞)二阶可导,f′(x0)=0。问f(x)还要满足以下哪个条件,则f(x0)必是f(x)的最大值()?A
x=x0是f(x)的唯一驻点B
x=x0是f(x)的极大值点C
f″(x)在(-∞,+∞)恒为负值D
f″(x0)≠0
考题
问答题设函数f(x),g(x)在[a,b]上连续,在(a,b)内可导,且对于(a,b)内一切x有f′(x)g(x)-f(x)g′(x)≠0。证明:如果f(x)在(a,b)内有两个零点,则介于两个零点之间,g(x)至少有一个零点。
热门标签
最新试卷