网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
证明一个向量组的任一线性无关部分组都可扩充成它的一个极大线性部分组
参考答案和解析
正确
更多 “证明一个向量组的任一线性无关部分组都可扩充成它的一个极大线性部分组” 相关考题
考题
设A为m×n阶矩阵,则齐次线性方程组AX=0只有零解的充分必要条件是(64)。A.A的列向量组线性无关B.A的列向量组线性相关C.A的行向量组线性无关D.A的行向量组线性相关A.A的列向量组线性无关B.A的列向量组线性相关C.A的行向量组线性无关D.A的行向量组线性相关
考题
设向量组Ⅰ可由向量组Ⅱ:线性表示,下列命题正确的是( )
A.若向量组Ⅰ线性无关,则r≤s
B.若向量组Ⅰ线性相关,则r大于s
C.若向量组Ⅱ线性无关,则r≤s
D.若向量组Ⅱ线性相关,则r小于s
考题
设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是( )。
A、矩阵A的任意两个列向量线性相关
B、矩阵A的任意两个列向量线性无关
C、矩阵A的任一列向量是其余列向量的线性组合
D、矩阵A必有一个列向量是其余列向量的线性组合
考题
设向量组I:α1α2αr…,可由向量组Ⅱβ1,β2,…βs:线性表示,下列命题正确的是( )。A.若向量组I线性无关.则r≤S
B.若向量组I线性相关,则r>s
C.若向量组Ⅱ线性无关,则r≤s
D.若向量组Ⅱ线性相关,则r>s
考题
设A为4X5矩阵,且A的行向量组线性无关,则( ).《》( )A.A的列向量组线性无关
B.方程组AX=b有无穷多解
C.方程组AX=b的增广矩阵的任意四个列向量构成的向量组线性无关
D.A的任意4个列向量构成的向量组线性无关
考题
单选题向量组α(→)1,α(→)2,…,α(→)s线性无关的充分条件是( )。A
α(→)1,α(→)2,…,α(→)s均不为零向量B
α(→)1,α(→)2,…,α(→)s中任意两个向量的分量不成比例C
α(→)1,α(→)2,…,α(→)s中任意一个向量均不能由其余s-1个向量线性表示D
α(→)1,α(→)2,…,α(→)s中有一部分向量线性无关
考题
单选题设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是( )。[2017年真题]A
矩阵A的任意两个列向量线性相关B
矩阵A的任意两个列向量线性无关C
矩阵A的任一列向量是其余列向量的线性组合D
矩阵A必有一个列向量是其余列向量的线性组合
考题
单选题设A为4×5矩阵,且A的行向量组线性无关,则( )。A
A的列向量组线性无关B
方程组AX(→)=b(→)有无穷多解C
方程组AX(→)=b(→)的增广矩阵A(_)的任意四个列向量构成的向量组线性无关D
A的任意4个列向量构成的向量组线性无关
考题
单选题A是n阶方阵,其秩r<n,则在A的n个行向量中( ).A
必有r个行向量线性无关B
任意r个行向量线性无关C
任意r个行向量都构成极大线性无关向量组D
任意一个行向量都可由其他任意r个行向量线性表出
考题
单选题向量组α(→)1,α(→)2,…,α(→)s线性相关的充要条件是( )。A
α(→)1,α(→)2,…,α(→)s均为零向量B
其中有一个部分组线性相关C
α(→)1,α(→)2,…,α(→)s中任意一个向量都能由其余向量线性表示D
其中至少有一个向量可以表为其余向量的线性组合
考题
单选题设向量组α(→)1,α(→)2,…,α(→)s的秩为r,则( )。A
必定r<sB
向量组中任意个数小于r的部分组线性无关C
向量组中任意r个向量线性无关D
若s>r,则向量组中任意r+l个向量必线性相关
考题
单选题下列说法不正确的是( )。A
s个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则加入k个n维向量β(→)1,β(→)2,…,β(→)k后的向量组仍然线性无关B
s个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则每个向量增加k维分量后得到的向量组仍然线性无关C
s个n维向量α(→)1,α(→)2,…,α(→)s线性相关,则加入k个n维向量β(→)1,β(→)2,…,β(→)k后得到的向量组仍然线性相关D
s个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则减少一个向量后得到的向量组仍然线性无关
考题
问答题设向量组α(→)1,α(→)2,…,α(→)s的秩为r>0,证明: (1)α(→)1,α(→)2,…,α(→)s中任意r个线性无关的向量都构成它的一个极大线性无关组; (2)若α(→)1,α(→)2,…,α(→)s中每个向量都可由其中某r个向量线性表示,则这r个向量必为α(→)1,α(→)2,…,α(→)s的一个极大线性无关组。
考题
单选题设向量组α1,α2,…,αr(Ⅰ)是向量组α1,α2,…,αs(Ⅱ)的部分线性无关组,则( ).A
(Ⅰ)是(Ⅱ)的极大线性无关组B
r(Ⅰ)=r(Ⅱ)C
当(Ⅰ)中的向量均可由(Ⅱ)线性表示时,r(Ⅰ)=r(Ⅱ)D
当(Ⅱ)中的向量均可由(Ⅰ)线性表示时,r(Ⅰ)=r(Ⅱ)
热门标签
最新试卷