网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

图中任意两个顶点之间有路径相通我们称之为完全图。


参考答案和解析
A
更多 “图中任意两个顶点之间有路径相通我们称之为完全图。” 相关考题
考题 连通图是指图中任意两个顶点之间()。 A.都连通的无向图B.都不连通的无向图C.都连通的有向图D.都不连通的有向图

考题 拓扑序列是无环有向图中所有顶点的一个线性序列,图中任意路径中的各个顶点在该图的拓扑序列中保持先后关系,(52)为下图所示有向图的一个拓扑序列。A.1 2 3 4 5 6 7B.1 5 2 6 3 7 4C.5 1 2 6 3 4 7D.5 1 2 3 7 6 4

考题 ● 拓扑排序是指有向图中的所有顶点排成一个线性序列的过程,若在有向图中从顶点vi到vj有一条路径,则在该线性序列中,顶点 vi 必然在顶点 vj之前。因此,若不能得到全部顶点的拓扑排序序列,则说明该有向图一定 (57)(57)A. 包含回路B. 是强连通图C. 是完全图D. 是有向树

考题 采用邻接表存储结构,编写一个算法,判别无向图中任意给定的两个顶点之间是否存在一条长度为为k的简单路径。

考题 试基于图的深度优先搜索策略写一算法,判别以邻接表方式存储的有向图中是否存在由顶点vi到顶点vj的路径(i≠j)。

考题 用相邻矩阵A表示图,判定任意两个顶点Vi和Vi,之间都有长度为m的路径相连,则只要检查(40)的第i行第j列的元素是否为0即可。从邻接矩阵可以看出,该图共有(41)个顶点。如果是有向图,该图有(42)条弧;如果是无向图,则共有(43)条边。A.mAB.AC.AmD.Am-1

考题 用相邻矩阵A表示图,判定任意两个顶点Vi和Vj之间是否有长度为m的路径相连,则只要检查(49)的第i行第i列的元素是否为0即可。A.mAB.AC.AmD.Am-1

考题 下列算法中,()算法用来求图中某顶点到其他顶点所有顶点之间的最短路径。A.DijkstraB.FloyedC.PrimD.Kruskal

考题 对于连通无向图G,以下叙述中,错误的是( )。A. G 中任意两个顶点之间存在路径 B. G 中任意两个顶点之间都有边 C. 从 G 中任意顶点出发可遍历图中所有顶点 D. G的邻接矩阵是对称的

考题 拓扑序列是无环有向图中所有顶点的一个线性序列,图中任意路径中的各个顶点在该图的拓扑序列中保持先后关系。对于图中的有向图, ( ) 不是其的一个拓扑序列。 A.1526374 B.1526734 C.5123764 D.5126374

考题 用邻接矩阵A表示图,判定任意两个顶点Vi和Vj之间是否有长度m路径相连,则只要检查()的第i行和第j列的元素是否为零即可。A.mA B.A C.Am D.Am-1

考题 以下关于无向连通图 G 的叙述中,不正确的是(60)。A.G 中任意两个顶点之间均有边存在 B.G 中任意两个顶点之间存在路径 C.从 G 中任意顶点出发可遍历图中所有顶点 D.G 的临接矩阵是对称矩阵

考题 若从无向图中任意一个顶点出发进行1次深度优先搜索便可以访问到该图的所有顶点,则该图一定是一个()。A、非连通图B、强连通图C、连通图D、完全图

考题 在带权图中,两个顶点之间的路径长度是()。A、路径上的顶点数目B、路径上的边的数目C、路径上顶点和边的数目D、路径上所有边上的权值之和

考题 n个顶点的强连通有向图G,最多有()条边,最少有()边。强连通图即是任何两个顶点之间有路径相通,当所有结点在一个环上时,必定是强连通图。

考题 已知n个顶点的有向图,若该图是强连通的(从所有顶点都存在路径到达其他顶点),则该图中最少有多少条有向边()A、nB、n+1C、n-1D、n*(n-1)

考题 在有向图G中,若对于任意一对顶点都存在两条方向相反的路径,则称有向图G为()

考题 在无向图G中,若对于任意一对顶点都存在路径,则称无向图G为()

考题 在一个无向图中,若两个顶点之间的路径长度为k,则该路径上的顶点数为()。A、KB、k+1C、k+2D、2k

考题 n个顶点的无向图,采用邻接表存储,回答下列问题? ⑴图中有多少条边? ⑵任意两个顶点i和j是否有边相连? ⑶任意一个顶点的度是多少?

考题 在有向图G中,若任意两个顶点Vi和Vj都连通,从VI到Vj和从Vj到Vi都存在路径,则称该图为()。

考题 n个顶点的无向图,采用邻接矩阵存储,回答下列问题: ⑴图中有多少条边? ⑵任意两个顶点i和j是否有边相连? ⑶任意一个顶点的度是多少?

考题 单选题在一个无向图中,若两个顶点之间的路径长度为k,则该路径上的顶点数为()。A KB k+1C k+2D 2k

考题 问答题n个顶点的无向图,采用邻接表存储,回答下列问题? ⑴图中有多少条边? ⑵任意两个顶点i和j是否有边相连? ⑶任意一个顶点的度是多少?

考题 单选题已知n个顶点的有向图,若该图是强连通的(从所有顶点都存在路径到达其他顶点),则该图中最少有多少条有向边()A nB n+1C n-1D n*(n-1)

考题 单选题若从无向图中任意一个顶点出发进行1次深度优先搜索便可以访问到该图的所有顶点,则该图一定是一个()。A 非连通图B 强连通图C 连通图D 完全图

考题 填空题n个顶点的强连通有向图G,最多有()条边,最少有()边。强连通图即是任何两个顶点之间有路径相通,当所有结点在一个环上时,必定是强连通图。

考题 单选题在带权图中,两个顶点之间的路径长度是()。A 路径上的顶点数目B 路径上的边的数目C 路径上顶点和边的数目D 路径上所有边上的权值之和