网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
如果一个数组A[1…n]中某个元素的数量超过其元素数量的一半,称其包含主元素,假设比较两个元素大小的时间不是常数但判定两个元素是否相等的时间是常数,要求对于给定数组A,设计算法判定其是否有主元素,如果有,找到该元素。 (1) 设计时间复杂性为O(nlogn)的算法完成该任务。 (2) 设计时间复杂性为O(n)的算法完成该任务。
参考答案和解析
C
更多 “如果一个数组A[1…n]中某个元素的数量超过其元素数量的一半,称其包含主元素,假设比较两个元素大小的时间不是常数但判定两个元素是否相等的时间是常数,要求对于给定数组A,设计算法判定其是否有主元素,如果有,找到该元素。 (1) 设计时间复杂性为O(nlogn)的算法完成该任务。 (2) 设计时间复杂性为O(n)的算法完成该任务。” 相关考题
考题
已知一个大小为n的整型数组,现求该数组的全部连续子数组的元素之和的最大值,最优算法的时间复杂度是()如:a[4]={2,-1,3,-4},它的全部连续子数组为{2,-1,3,-4,[2,-1],[-1,3],[3,-4],[2,-1,3],[-1,3,-4],[2,-1,3,-4]},它们的元素之和为{2,-1,3,-4,1,2,-1,4,-2,0},其中的最大值为4。A.O(logN)B.O(N)C.O(N*logN)D.O(N^2)
考题
类比二分搜索算法,设计A分搜索算法(k为大于2的整数)如下:首先检查n/k处(n为被搜索集合的元素个数)的元素是否等于要搜索的值,然后检查2n/k处的元素,...,这样,或者找到要搜索的元素,或者把集合缩小到原来的1/k;如果未找到要搜索的元素,则继续在得到的集合上进行k分搜索;如此进行,直到找到要搜索的元素或搜索失败。此A分搜索算法在最坏情况下搜索成功的时间复杂度为(1),在最好情况下搜索失败的时间复杂度为(2)。A.O(logn)B.O(nlogn)C.O(logkn)D.O(nlogkn)
考题
在下列对单链表进行的操作中,算法时间复杂度为O(n)的是()。
A、访问第i个元素的前驱(1B、在第i个元素之后插入一个新元素(1≤i≤n)C、删除第i个元素(1≤i≤n)D、对表中元素进行排序
考题
给定一组长度为n的无序序列,将其存储在一维数组a[O..n-1]中。现采用如下方法找出其中的最大元素和最小元素:比较a[O]和a[n-1],若a[0]较大,则将二者的值进行交换;再比较a[1]和a[n-2],若a[1]较大,则交换二者的值;然后依次比较a[2]和a[n-3]、 a[3]和a[n-4]、…,使得每一对元素中的较小者被交换到低下标端。重复上述方法,在数组的前n/2个元素中查找最小元素,在后n/2个元素查找最大元素,从而得到整个序列的最小元素和最大元素。上述方法采用的算法设计策略是(64)。A.动态规划法B.贪心法C.分治法D.回溯法
考题
阅读下列说明和流程图,填补流程图中的空缺,将解答填入答题纸的对应栏内。 【说明】 设有二维整数数组(矩阵)A[1:m,1:n],其每行元素从左到右是递增的,每列元素从上到下是递增的。以下流程图旨在该矩阵中需找与给定整数X相等的数。如果找不到则输出false;只要找到一个(可能有多个)就输出True以及该元素的下标i和j(注意数组元素的下标从1开始)。 例如,在如下矩阵中查找整数8,则输出伟:True,4,1 2 4 6 9 4 5 9 10 6 7 10 12 8 9 11 13 流程图中采用的算法如下:从矩阵的右上角元素开始,按照一定的路线逐个取元素与给定整数X进行比较(必要时向左走一步或向下走一步取下一个元素),直到找到相等的数或超出矩阵范围(找不到)。【流程图】【问题】该算法的时间复杂数是() 供选择答案:A.O(1) B.O(m+n) C.O(m*n) D,O(m+n)
考题
类比二分搜索算法,设计k分搜索算法(k为大于2的整数)如下:首先检查n/k处(n为被搜索集合的元素个数)的元素是否等于要搜索的值,然后检查2n/k处的元素,……,这样,或者找到要搜索的元素,或者把集合缩小到原来的1/k;如果未找到要搜索的元素,则继续在得到的集合上进行k分搜索;如此进行,直到找到要搜索的元素或搜索失败。此k分搜索算法在最坏情况下搜索成功的时间复杂度为(57),在最好情况下搜索失败的时间复杂度为(58)。A.O(logn)B.O(nlogn)C.O(logkn)D.O(nlogkn)
考题
快速排序算法在排序过程中,在待排序数组中确定一个元素为基准元素,根据基准元素把待排序数组划分成两个部分,前面一部分元素值小于等于基准元素,而后面一部分元素值大于基准元素。然后再分别对前后两个部分进一步进行划分。根据上述描述,快速排序算法采用了 (61) 算法设计策略。已知确定基准元素操作的时间复杂度为,则快速排序算法的最好和最坏情况下的时间复杂度为 (62) 。A.分治B.动态规划C.贪心D.回溯
考题
快速排序算法是,在排序过程中,在待排序数组中确定一个元素为基准元素,根据基准元素把待排序数组划分成两个部分,前面一部分元素值小于基准元素,而后面一部分元素值大于基准元素。然后再分别对前后两个部分进一步进行划分。根据上述描述,快速排序算法采用了 ( ) 算法设计策略。已知确定着基准元素操作的时间复杂度为O(n),则快速排序算法的最好和最坏情况下的时间复杂度为 (请作答此空) 。A.O(n)和O(nlgn)
B.O(n)和O(n2)
C.O(nlgn)和O(nlgn)
D.O(nlgn)和O(n2)
考题
快速排序算法在排序过程中,在待排序数组中确定一个元素为基准元素,根据基准元素把待排序数组划分成两个部分,前面一部分元素值小于等于基准元素,而后面一部分元素值大于基准元素。然后再分别对前后两个部分进一步进行划分。根据上述描述,快速排序算法采用了(请作答此空)算法设计策略。已知确定基准元素操作的时间复杂度为Θ(n),则快速排序算法的最好和最坏情况下的时间复杂度为( )。A.分治
B.动态规划
C.贪心
D.回溯
考题
快速排序算法在排序过程中,在待排序数组中确定一个元素为基准元素,根据基准元素把待排序数组划分成两个部分,前面一部分元素值小于等于基准元素,而后面一部分元素值大于基准元素。然后再分别对前后两个部分进一步进行划分。根据上述描述,快速排序算法采用了( )算法设计策略。已知确定基准元素操作的时间复杂度为Θ(n),则快速排序算法的最好和最坏情况下的时间复杂度为(请作答此空)。
考题
快速排序算法是,在排序过程中,在待排序数组中确定一个元素为基准元素,根据基准元素把待排序数组划分成两个部分,前面一部分元素值小于基准元素,而后面一部分元素值大于基准元素。然后再分别对前后两个部分进一步进行划分。根据上述描述,快速排序算法采用了 (请作答此空) 算法设计策略。已知确定着基准元素操作的时间复杂度为O(n),则快速排序算法的最好和最坏情况下的时间复杂度为 ( ) 。A.分治
B.动态规划
C.贪心
D.回溯
考题
给定包含n个正整数的数组A和正整数x,要判断数组A中是否存在两个元素之和等于x,先用插入排序算法对数组A进行排序,再用以下过程P来判断是否存在两个元素之和等于x。low=1;high=n;while(high>low)if A[low]+A[high]=x return true;else if A[low]+A[high]>x low++;else high--;return false;则过程P的时间复杂度为( ),整个算法的时间复杂度为(请作答此空)。A.O(n)
B.O(nlgn)
C.O(n2)
D.O(n2lgn)
考题
快速排序算法在排序过程中,在待排序数组中确定一个元素为基准元素,根据基准元素把待排序数组划分成两个部分,前面一部分元素值小于基准元素,而后面一部分元素值大于基准元素。然后再分别对前后两个部分进一步进行划分。根据上述描述,快速排序算法采用了(61)算法设计策略。已知确定着基准元素操作的时间复杂度为O(n),则快速排序算法的最好和最坏情况下的时间复杂度为(62)。A.O(n)和O(nlgn)
B.O(n)和O(n2)
C.O(nlgn)和O(nlgn)
D.O(nlgn)和O(n2)
考题
快速排序算法在排序过程中,在待排序数组中确定一个元素为基准元素,根据基准元素把待排序数组划分成两个部分,前面一部分元素值小于基准元素,而后面一部分元素值大于基准元素。然后再分别对前后两个部分进一步进行划分。根据上述描述,快速排序算法采用了(61)算法设计策略。已知确定着基准元素操作的时间复杂度为O(n),则快速排序算法的最好和最坏情况下的时间复杂度为(62)。A.分治
B.动态规划
C.贪心
D.回溯
考题
设顺序栈S中有2n个元素,从栈顶到栈底的元素依次为a2n,a2n-1,…,a1,要求通过一个循环队列重新排列栈中元素,使得从栈顶到栈底的元素依次为a2n,a2n-2,…,a2,a2n-1,a2n-3,…,a1,请设计算法实现该操作,要求空间复杂度和时间复杂度均为O(n)。
考题
单选题从n个数中选取最大元素()。A
基本操作是数据元素间的交换B
算法的时间复杂度是O(n)C
算法的时间复杂度是O(n2)D
需要进行(n+1)次数据元素间的比较
热门标签
最新试卷