网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
以.为通解的二阶线性常系数齐次微分方程为_____
参考答案
参考解析
解析:所给问题为求解微分方程的反问题.常见的求解方法有两种:解法1先由通解写出二阶线性常系数齐次微分方程的特解,再由此写出方程的特征根r1,
r2,第三步写出特征方程(r-r1)(r-r2)=0,再依此写出相应的微分方程;
解法2由所给方程的通解,利用微分法消去任意常数,得出微分方程.这里只利用解法1求解.由于二阶线性常系数齐次微分方程的通解为,由其解的结构定理可知方程有两个特解:,从而知道特征方程的二重根r=1.
r2,第三步写出特征方程(r-r1)(r-r2)=0,再依此写出相应的微分方程;
解法2由所给方程的通解,利用微分法消去任意常数,得出微分方程.这里只利用解法1求解.由于二阶线性常系数齐次微分方程的通解为,由其解的结构定理可知方程有两个特解:,从而知道特征方程的二重根r=1.
更多 “以.为通解的二阶线性常系数齐次微分方程为_____” 相关考题
考题
以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是:
A. y"-2y'-3y=0
B. y"+2y'-3y=0
C. y"-3y'+2y=0
D. y"+2y'+y=0
考题
若二阶常系数线性齐次微分方程y"+ay'+by=0的通解为y=(C1+C2x)e^x,则非齐次方程y"+ay'+by=x满足条件y(0)=2,y'(0)=0的解为y=________.
考题
单选题若二阶常系数线性齐次微分方程y″+ay′+by=0的通解为y=(C1+C2x)ex,则非齐次方程y″+ay′+by=x满足条件y(0)=2,y′(0)=0的解为y=( )。A
xex+x2+2B
-xex+x2+2C
-xex+x+2D
-xex+x
考题
单选题设y=ex(c1sinx+c2cosx)(c1、c2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为( )。A
y″-y′+y=0B
y″-2y′+2y=0C
y″-2y′=0D
y′+2y=0
考题
单选题以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是( )。[2012年真题]A
y″-2y′-3y=0B
y″+2y′-3y=0C
y″-3y′+2y=0D
y″-2y′-3y=0
考题
单选题(2012)以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是:()A
y″-2y′-3y=0B
y″+2y′-3y=0C
y″-3y′+2y=0D
y″+2y′+y=0
考题
单选题设y=ex(c1sinx+c2cosx)(c1、c2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为( )。A
y″+2y′+2y=0B
y″-2y′+2y=0C
y″-2y′-2y=0D
y″+2y′+2y=0
热门标签
最新试卷