网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
填空题
函数F(x)=3x12+x22-2x1x2+2在点(1,0)处的梯度为()。
参考答案
参考解析
解析:
暂无解析
更多 “填空题函数F(x)=3x12+x22-2x1x2+2在点(1,0)处的梯度为()。” 相关考题
考题
以下结论正确的是()。
A、若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B、函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C、若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D、若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.
考题
函数厂(x)具有连续的二阶导数,且f″(0)≠0,则x=0( )。A.不是函数f(x)的驻点
B.一定是函数f(x)的极值点
C.一定不是函数f(x)的极值点
D.是否为函数f(x)的极值点,还不能确定
考题
设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )A.f(a)=0且f′(a)=0
B.f(a)=0且f′(a)≠0
C.f(a)>0且f′(a)>
D.f(a)<0且f′(a)<
考题
下列命题正确的是()A.函数f(x)的导数不存在的点,一定不是f(x)的极值点
B.若x0为函数f(x)的驻点,则x0必为f(x)的极值点
C.若函数f(x)在点x0处有极值,且f'(x0)存在,则必有f'(x0)=0
D.若函数f(x)在点x0处连续,则f'(x0)一定存在
考题
已知函数f(x)=㏑(x+2)-x2+bx+c,
(1)若点P(-1,0)在f(x)的图象上,过点P的切线与直线y=-x+2平行,求f(x)的解析式;
(2)若f(x)在区间[0,2]上单调递增,求b的取值范围。
考题
下列命题中,正确的是( ).A.单调函数的导函数必定为单调函数
B.设f(x)为单调函数,则f(x)也为单调函数
C.设f(x)在(a,b)内只有一个驻点xo,则此xo必为f(x)的极值点
D.设f(x)在(a,b)内可导且只有一个极值点xo,f(xo)=0
考题
以下叙述正确的是:连续函数f(x)在[a,b]上的定积分等于()。A、f(x)的导函数在b点的值减去在a点的值B、f(x)的导函数在a点的值减去在b点的值C、f(x)的原函数在b点的值减去在a点的值D、f(x)的原函数在a点的值减去在b点的值
考题
若函数f(x,y)在闭区域D上连续,下列关于极值点的陈述中正确的是()。A、f(x,y)的极值点一定是f(x,y)的驻点B、如果P0是f(x,y)的极值点,则P0点处B2-AC0C、如果P0是可微函数f(x,y)的极值点,则P0点处df=0D、f(x,y)的最大值点一定是f(x,y)的极大值点
考题
下列结论不正确的是()。A、y=f(x)在点x0处可微,则f(x)在点x0处连续B、y=f(x)在点x0处可微,则f(x)在点x0处可导C、y=f(x)在点x0处连续,则f(x)在点x0处可微D、y=f(x)在点x0处可导,则f(x)在点x0处连续
考题
单选题考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在。若用“P⇒Q”表示可由性质P推出Q,则有( )。A
②⇒③⇒①B
③⇒②⇒①C
③⇒④⇒①D
③⇒①⇒④
考题
单选题函数f(x)在点x=x0处连续是f(x)在点x=x0处可微的( )。[2019年真题]A
充分条件B
充要条件C
必要条件D
无关条件
热门标签
最新试卷