网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
如果线性规划问题存在目标函数为有限值的最优解,求解时只需在()集合中进行搜索即可得到最优解。
- A、基
- B、基本解
- C、基可行解
- D、可行域
参考答案
更多 “如果线性规划问题存在目标函数为有限值的最优解,求解时只需在()集合中进行搜索即可得到最优解。A、基B、基本解C、基可行解D、可行域” 相关考题
考题
● 线性规划问题就是面向实际应用,求解一组非负变量,使其满是给定的一组线性约束条件,并使某个线性目标函数达到极值。满是这些约束条件的非负变量组的集合称为可行解域。可行解域中使目标函数达到极值的解称为最优解。以下关于求解线性规划问题的叙述中,不正确的是(56)。(56)A.线性规划问题如果有最优解,则一定会在可行解域的某个顶点处达到B.线性规划问题中如果再增加一个约束条件,则可行解域将缩小或不变C.线性规划问题如果存在可行解,则一定有最优解D.线性规划问题的最优解只可能是0个、1个或无穷多个
考题
用图解法求解一个关于最大利润的线性规划问题时,若其等利润线与可行解区域相交,但不存在可行解区域最边缘的等利润线,则该线性规划问题( )。
A 、有无穷多个最优解B 、有可行解但无最优解C 、有可行解且有最优解D 、无可行解
考题
下列说法正确的为() 。
A.如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解B.如果线性规划的对偶问题无可行解,则原问题也一定无可行解C.在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原问题可行解的目 标函数值都一定不超过其对偶问题可行解的目标函数D.如果线性规划问题原问题有无界解,那么其对偶问题必定无可行解
考题
线性规划问题由线性的目标函数和线性的约束条件(包括变量非负条件)组成。满足约束条件的所有解的集合称为可行解区。既满足约束条件,又使目标函数达到极值的解称为最优解。以下关于可行解区和最优解的叙述中,正确的是( )。A.线性规划问题的可行解区一定存在B.如果可行解区存在,则一定有界C.如果可行解区存在但无界,则一定不存在最优解D.如果最优解存在,则一定会在可行解区的某个顶点处达到
考题
用图解法求解一个关于最大利润的线性规划问题时,若其等利润线与可行解区域相交,但不存在可行解区域最边缘的等利润线,则该线性规划问题( )。A.有无穷多个最优解
B.有可行解但无最优解
C.有可行解且有最优解
D.无可行解
考题
用图解法求解一个关于最小成本的线性规划问题时,若其等成本线与可行解区域的某一条边重合,则该线性规划问题( )。A.有无穷多个最优解
B.有有限个最优解
C.有唯一的最优解
D.无最优解
考题
线性规划问题由线性的目标函数和线性的约束条件(包括变量非负条件)组成。满足约束条件的所有解的集合称为可行解区。既满足约束条件,又使目标函数达到极值的解称为最优解。以下关于可行解区和最优解的叙述中,正确的是(52)。A.线性规划问题的可行解区一定存在
B.如果可行解区存在,则一定有界
C.如果可行解区存在但无界,则一定不存在最优解
D.如果最优解存在,则一定会在可行解区的某个顶点处达到
考题
下列关于线性规划叙述正确的是()。A、线性规划问题,若有最优解,则必是一个基变量组的可行基解B、线性规划问题一定有可行基解C、线性规划问题的最优解只能在最低点上达到D、单纯型法求解线性规划问题时,每换基迭代一次必使目标函数值下降一次
考题
单选题下列关于线性规划叙述正确的是()。A
线性规划问题,若有最优解,则必是一个基变量组的可行基解B
线性规划问题一定有可行基解C
线性规划问题的最优解只能在最低点上达到D
单纯型法求解线性规划问题时,每换基迭代一次必使目标函数值下降一次
考题
单选题如果线性规划问题存在目标函数为有限值的最优解,求解时只需在()集合中进行搜索即可得到最优解。A
基B
基本解C
基可行解D
可行域
热门标签
最新试卷