网友您好, 请在下方输入框内输入要搜索的题目:

2010年中考数学压轴题100题精选(110题)答案

请教:2010年北京市中考《数学》试题第1大题第4小题如何解答?

【题目描述】

第4题:

 


正确答案:A


( 98~100 题共用备选答案)

第 98 题 与消化性溃疡的发病有关( )


正确答案:C


请教:2010年湖北省中考数学预测试题(2)第1大题第1小题如何解答?

【题目描述】

第1题:

 

 


正确答案:A

答案分析:


请教:2010年北京市中考《数学》试题第4大题第2小题如何解答?

【题目描述】

第20题:

 


【参考答案分析】:


( 99~100 题共用备选答案)

第 99 题 休克代偿期病人表现为( )


正确答案:A


2010年中考数学压轴题100题精选(1-10题)答案【001】解:(1) 抛物线 经过点 ,········································································ 1分二次函数的解析式为: ········································ 3分(2) 为抛物线的顶点 过 作 于 ,则 ,········································· 4分当 时,四边形 是平行四边形······································· 5分当 时,四边形 是直角梯形过 作 于 , 则(如果没求出 可由 求 )·········································································· 6分当 时,四边形 是等腰梯形综上所述:当 、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形.· 7分(3)由(2)及已知, 是等边三角形则过 作 于 ,则 ·························································· 8分= ·························· 9分当 时, 的面积最小值为 ····················································· 10分此时【002】解:(1)1, ;(2)作QF⊥AC于点F,如图3, AQ = CP= t,∴ .得 .∴ . ∴ ,即 .(3)能.∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形.此时∠AQP=90°.由△APQ∽△ABC,得 ,即 . 解得 .②如图5,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形.此时∠APQ =90°.由△AQP∽△ABC,得 ,即 . 解得 .(4) 或 .【注:①点P由C向A运动,DE经过点C.方法一、连接QC,作QG⊥BC于点G,如图6., .由 ,得 ,解得 .方法二、由 ,得 ,进而可得,得 ,∴ .∴ .②点P由A向C运动,DE经过点C,如图7., 】【003】解.(1)点A的坐标为(4,8) …………………1分将A (4,8)、C(8,0)两点坐标分别代入y=ax2+bx8=16a+4b得0=64a+8b解 得a=- ,b=4∴抛物线的解析式为:y=- x2+4x …………………3分(2)①在Rt△APE和Rt△ABC中,tan∠PAE= = ,即 =∴PE= AP= t.PB=8-t.∴点E的坐标为(4+ t,8-t).∴点G的纵坐标为:- (4+ t)2+4(4+ t)=- t2+8. …………………5分∴EG=- t2+8-(8-t) =- t2+t.∵- <0,∴当t=4时,线段EG最长为2. …………………7分②共有三个时刻. …………………8分t1= , t2= ,t3= . …………………11分【004】(1)解:由 得 点坐标为由 得 点坐标为 ∴ (2分)由 解得 ∴ 点的坐标为 (3分)∴ (4分)(2)解:∵点 在 上且 ∴ 点坐标为 (5分)又∵点 在 上且 ∴ 点坐标为 (6分)∴ (7分)(3)解法一: 当 时,如图1,矩形 与 重叠部分为五边形 ( 时,为四边形 ).过 作 于 ,则∴ 即 ∴∴即 (10分)∵ 为 的中点,∴在 中, ∴ ··········· 2分∴即点 到 的距离为 ·································· 3分(2)①当点 在线段 上运动时, 的形状不发生改变.∵ ∴∵ ∴ ,同理 ············································································ 4分如图2,过点 作 于 ,∵∴∴则在 中,∴ 的周长= ···································· 6分②当点 在线段 上运动时, 的形状发生改变,但 恒为等边三角形.当 时,如图3,作 于 ,则类似①,∴ ············································································· 7分∵ 是等边三角形,∴此时, ································· 8分此时,当 时,如图5,则 又∴因此点 与 重合, 为直角三角形.∴此时,综上所述,当 或4或 时, 为等腰三角形.【006】解:(1)OC=1,所以,q=-1,又由面积知0.5OC×AB= ,得AB= ,设A(a,0),B(b,0)AB=b-a= = ,解得p= ,但p0,所以p= 。所以解析式为:(2)令y=0,解方程得 ,得 ,所以A( ,0),B(2,0),在直角三角形AOC中可求得AC= ,同样可求得BC= ,显然AC2+BC2=AB2,得△ABC是直角三角形。AB为斜边,所以外接圆的直径为AB= ,所以 。(3)存在,AC⊥BC,①若以AC为底边,则BD//AC,易求AC的解析式为y=-2x-1,可设BD的解析式为y=-2x+b,把B(2,0)代入得BD解析式为y=-2x+4,解方程组 得D( ,9)②若以BC为底边,则BC//AD,易求BC的解析式为y=0.5x-1,可设AD的解析式为y=0.5x+b,把 A( ,0)代入得AD解析式为y=0.5x+0.25,解方程组 得D( ) 综上,所以存在两点:( ,9)或( )。【007】【008】证明:(1)∵∠ABC=90°,BD⊥EC,∴∠1与∠3互余,∠2与∠3互余,∴∠1=∠2…………………………………………………1分∵∠ABC=∠DAB=90°,AB=AC∴△BAD≌△CBE…………………………………………2分∴AD=BE……………………………………………………3分(2)∵E是AB中点,∴EB=EA由(1)AD=BE得:AE=AD……………………………5分∵AD∥BC∴∠7=∠ACB=45°∵∠6=45°∴∠6=∠7由等腰三角形的性质,得:EM=MD,AM⊥DE。即,AC是线段ED的垂直平分线。……………………7分(3)△DBC是等腰三角(CD=BD)……………………8分理由如下:由(2)得:CD=CE由(1)得:CE=BD∴CD=BD∴△DBC是等腰三角形。……………………………10分【009】四边形 为矩形.轴, 轴,四边形 为矩形.轴, 轴,四边形 均为矩形.········· 1分,,..,,.··········································································· 2分②由(1)知 ...······················································································ 4分,.············································································· 5分..······················································································· 6分轴,四边形 是平行四边形..······················································································· 7分同理 ..······················································································· 8分(2) 与 仍然相等.······································································· 9分,又 ,.·························· 10分..,...······················································································ 11分轴,四边形 是平行四边形..同理 ..····················································································· 12分【010】解得 抛物线对应的函数表达式为 . 3分(2)存在.在 中,令 ,得 .令 ,得 , ., , .又 , 顶点 .························································· 5分容易求得直线 的表达式是 .在 中,令 ,得 ., .·········································································· 6分在 中,令 ,得 .., 四边形 为平行四边形,此时 .··························· 8分(3) 是等腰直角三角形.理由:在 中,令 ,得 ,令 ,得 .直线 与坐标轴的交点是 , ., .································································· 9分又 点 , . .········································ 10分由图知 , .································· 11分,且 . 是等腰直角三角形.·························· 12分(4)当点 是直线 上任意一点时,(3)中的结论成立. 14分


( 99~100 题共用备选答案)

第 99 题 肋骨骨折应( )


正确答案:B


根据以下答案请回答 98~100 题:

第 98 题 协助诊断肠热症选用


正确答案:A
用已知伤寒、副伤寒沙门菌的O、H抗原检测受检血清中有无相应抗体的半定量凝集试验称肥达反应(Widaltest)。本试验能辅助诊断伤寒、甲、乙、丙型副伤寒沙门菌引起的肠热症。


100~101 题共用备选答案:

第 100 题 丙硫氧嘧啶( )。


正确答案:C


100~102 题共用备选答案:

第 100 题 变异型心绞痛时宜选用( )。


正确答案:D


请教:2010年河北中考数学模拟试题(18)第1大题第5小题如何解答?

【题目描述】

第5题:

 


 

正确答案:B

答案分析:

 


更多 “2010年中考数学压轴题100题精选(110题)答案” 相关考题
考题 (99-100题共用备选答案)第99题: 正确答案:E

考题 名词解释题液体静压轴承正确答案: 在液体静力润滑状态下工作的滑动轴承。具有回转精度高、刚度较高、转动平稳、无振动的特点,被广泛应用于超精密机床。 解析: 暂无解析

考题 (97-100题共用备选答案)第97题: 正确答案:E

考题 (99-100题共用备选答案)第99题: 正确答案:C

考题 (98-100题共用备选答案)第98题: 正确答案:C

考题 判断题数学问题解决是运用已有的数学知识去求解问题答案的心理过程或思考活动。A 对B 错正确答案: 错 解析: 暂无解析

考题 100~102 题共用备选答案:第 100 题 人类脊髓小脑损伤后可出现( )。 正确答案:B

考题 100~101 题共用备选答案:第 100 题 消化性溃疡病出现( )。 正确答案:D

考题 名词解释题静压轴承正确答案: 静压轴承从外部油源给轴瓦提供压力油,使球磨机进、出料端的大轴在高压油膜的作用下浮起,与轴瓦无直接接触,处在液体磨擦状态,从而极大地降低了起动力矩和旋转阻力矩 解析: 暂无解析

考题 名词解释题压轴正确答案: 一台折子戏演出中倒数第二个剧目。因最后一个剧目称大轴得名。 解析: 暂无解析
最新考题