2020年MBA考试《数学》章节练习(2020-03-22)

发布时间:2020-03-22


2020年MBA考试《数学》考试共25题,分为问题求解和条件充分性判断。小编为您整理第九章 排列与组合5道练习题,附答案解析,供您备考练习。


1、有4名男生,3名女生站成一排,男生不站排头和排尾的排法种数是()。【问题求解】

A.760

B.720

C.680

D.620

E.480

正确答案:B

答案解析:第一个步骤,选1名女生站排头,共有3种可能性;
第二个步骤,再选1名女生站排尾,则有2种可能性;
第三个步骤,诖剩下5人站位,则有5!=120(种)可能性;
从而总排法为3×2×120=720(种)。

2、4个人参加3项比赛,不同的报名法有

种。()
(1)每人至多报两项且至少报1项
(2)每人报且只报1项【条件充分性判断】

A.条件(1)充分,但条件(2)不充分

B.条件(2)充分,但条件(1)不充分

C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分

D.条件(1)充分,条件(2)也充分

E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分

正确答案:B

答案解析:由条件(1),4个人依次去报名,每个人有

(种)方式,由乘法原理,共有

种不同的报名方法.从而条件(1)不充分。
由条件(2),4个人依次报名,每个人有

(种)报名方式,从而共有

种不同的报名法,即条件(2)是充分的。

3、

将4本书分给甲、乙、丙3人,不同的分配方法的种数是

。()
(1)每人至少1本

(2)甲只能分到1本

【条件充分性判断】

A.条件(1)充分,但条件(2)不充分

B.条件(2)充分,但条件(1)不充分

C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分

D.条件(1)充分,条件(2)也充分

E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分

正确答案:A

答案解析:由条件(1),先从甲、乙、丙3人中选出1人准备分给2本书,再从4本书中选出2本分给此人,共有

种分法,最后将剩余的2本书分给2人,有2种分法,由乘法原理,总分法为

即条件(1)是充分的。
由条件(2),可得分法为

4、从7人中选出4人排成一排,则共有()种不同排法。【问题求解】

A.720

B.840

C.860

D.800

E.780

正确答案:B

答案解析:共有

5、3个人坐在有8个座位的一排椅子上,若每个人的左右两边都有空座位,则不同坐法的种数是()。【问题求解】

A.24

B.23

C.22

D.25

E.26

正确答案:A

答案解析:

如图所示,将8个座位编号,


第一步:从8个座位中选出3个,要求选出来的每个座位的左右都有空座位,共有4种(从左到右)(2,4,6),(2,4,7),(2,5,7),(3,5,7)。
第二步:安排3个人去坐选好的3个座位,共有3!=6(种)。

不同坐法,从而由乘法原理共有,4×6=24(种)。


下面小编为大家准备了 MBA考试 的相关考题,供大家学习参考。

声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:contact@51tk.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。