2020年MBA考试《数学》章节练习(2020-08-29)

发布时间:2020-08-29


2020年MBA考试《数学》考试共25题,分为问题求解和条件充分性判断。小编为您整理第五章 数列5道练习题,附答案解析,供您备考练习。


1、()(1)都是等差数列(2)【条件充分性判断】

A.条件(1)充分,但条件(2)不充分

B.条件(2)充分,但条件(1)不充分

C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分

D.条件(1)充分,条件(2)也充分

E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分

正确答案:C

答案解析:由条件(1),设即条件(1)不充分,显然条件(2)也不充分。联合条件(1)和条件(2),设等差数列

2、等差数列,则前9项的和=()。【问题求解】

A.66

B.87

C.99

D.271

E.324

正确答案:C

答案解析:设首项为,公差为d,由已知条件得,整理解得

3、如果数列x,,y和数列x,,y都是等差数列,则与的比值为()。【问题求解】

A.

B.

C.

D.

E.以上结论均不正确

正确答案:C

答案解析:设等差数列x,,y的公差是,等差数列x,,y的公差是,则。由,可得,因此。

4、已知等差数列的公差不为0,但第3、4、7项构成等比数列,()。【问题求解】

A.

B.

C.

D.

正确答案:A

答案解析:由已知第3、4、7项构成等比数列,即,化简得,因此。

5、三个不相同的非零实数a,b,c成等差数列,又a,c,b恰成等比数列,则()。【问题求解】

A.2

B.4

C.-4

D.-2

E.3

正确答案:B

答案解析:a,b,c成等差数列,则;a,c,b成等比数列,则有;由 c=2b-a,得,整理可知,即,解析:得,因为a≠b,所以


下面小编为大家准备了 MBA考试 的相关考题,供大家学习参考。

声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:contact@51tk.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。