2020年MBA考试《数学》章节练习(2020-11-28)

发布时间:2020-11-28


2020年MBA考试《数学》考试共25题,分为问题求解和条件充分性判断。小编为您整理第九章 排列与组合5道练习题,附答案解析,供您备考练习。


1、从1,2,3,4,…,20这20个自然数中任选3个不同的数,使它们成等差数列,这样的等差数列共有()。【问题求解】

A.90个

B.120个

C.160个

D.180个

E.200个

正确答案:D

答案解析:用穷举法,公差d=1的取法共有(1,2,3),(2,3,4),…,(18,19,20),公差d=2的取法共有(1,3,5),(2,4,6),…,(16,18,20),依次类推,公差d=9的取法共有(1,10,19),(2,11,20),而公差d=-1,d=-2,…,d=-9分别与公差d=1,d=2,…,d=9的取法相同,因此,总取法为2(18+16+14+…+2)=4(1+2+3+…+9)=

2、4个不同的小球放入甲、乙、丙、丁4个盒中,恰有1个空盒的放法有()。【问题求解】

A.

B.

C.

D.

E.

正确答案:E

答案解析:第一步,从4个盒中选出3个盒准备放入小球,共有种选法;第二步,从4个小球中选出2个小球放成一组,共有种选法;第三步,将三组小球(其中一组2个球,另两组各1个球)分别放入3个盒中,共有种放法.从而由乘法原理,总放法为种.

3、Ⅳ=864。()(1)从1~8这8个自然数中,任取2个奇数、2个偶数,可组成Ⅳ个不同的四位数(2)从1~8这8个自然数中,任取2个奇数,作为千位和百位数字,取2个偶数,作为十位和个位数字,可组成Ⅳ个不同的四位数【条件充分性判断】

A.条件(1)充分,但条件(2)不充分

B.条件(2)充分,但条件(1)不充分

C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分

D.条件(1)充分,条件(2)也充分

E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分

正确答案:A

答案解析:由条件(1),在1~8中共有4个奇数、4个偶数,任取2个奇数、2个偶数可组成个不同的四位数,即 N=6×6×24=864(个),即条件(1)充分。由条件(2),即条件(2)不充分。

4、N=1260。()(1)有实验员9人,分成3组,分别为2,3,4人,去进行内容相同的实验,共有N种不同的分法(2)有实验员9人,分成3组,分别为2,3,4人,去进行内容不同的实验,共有N种不同的分法【条件充分性判断】

A.条件(1)充分,但条件(2)不充分

B.条件(2)充分,但条件(1)不充分

C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分

D.条件(1)充分,条件(2)也充分

E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分

正确答案:A

答案解析:由条件(1),即条件(1)是充分的。由条件(2),即条件(2)不充分。

5、将一颗骰子连续抛掷两次,点数分别为a,b,则使一元二次方程无实数解的抛掷法共有()种。【问题求解】

A.24

B.20

C.18

D.17

E.16

正确答案:D

答案解析:方程无实数根的充分必要条件为从而满足条件的(a,b)为:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,2),(2,3),(2,4),(2,5),(2,6),(3,3),(3,4),(3,5),(3,6),(4,5),(4,6),共17种。


下面小编为大家准备了 MBA考试 的相关考题,供大家学习参考。

声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:contact@51tk.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。