2021年MBA考试《数学》章节练习(2021-07-10)
发布时间:2021-07-10
2021年MBA考试《数学》考试共25题,分为问题求解和条件充分性判断。小编为您整理第十二章 数据描述5道练习题,附答案解析,供您备考练习。
1、已知x是无理数,且(x+1)(x+3)是有理数,则:(1)是有理数(2)(x-1)(x-3)是无理数(3)是有理数(4)是无理数以上结论正确的有()个。【问题求解】
A.0
B.1
C.2
D.3
E.4
正确答案:C
答案解析:由x是无理数,是有理数,得:(1) 是无理数;(2)是无理数;(3)是无理数;(4)是无理数;因此(2),(4)正确。
2、若()。【问题求解】
A.-1
B.0
C.2
D.1
E.-2
正确答案:D
答案解析:因此
3、a+b+c+d+e的最大值是133。()(1)a,b,c,d,e是大于1的自然数,且abcde= 2700(2)a,b,c,d,e是大于1的自然数,且abcde= 2000【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:B
答案解析:由条件(1),abcde =2700 =2×2×3×3×3×5×5,当a =2,b =2,c =3,d =3,e =75时,a+b+c+d+e=2+2+3+3+75=85为其最大值。由条件(2) ,abcde =2000 =2×2 ×2 ×2 ×5 ×5 ×5,当a=b =c =d =2,e =125时,a+b+c+d+e=2+2+2+2+125 =133为其最大值。从而条件(1)不充分,条件(2)充分。
4、有一个四位数,它被131除余13,被132除余130,则此数字的各位数字之和为()。【问题求解】
A.23
B.24
C.25
D.26
E.27
正确答案:C
答案解析:设所求四位数为n,由已知,因此,由带余除法商和余数的唯一性可得,因此,所求四位数 n=132 ×14+130=1978,从而 1+9+7+8=25。
5、()。【问题求解】
A.
B.
C.
D.
E.
正确答案:B
答案解析:
下面小编为大家准备了 MBA考试 的相关考题,供大家学习参考。
声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:contact@51tk.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。
- 2020-06-27
- 2021-03-19
- 2021-06-26
- 2020-04-30
- 2020-09-24
- 2021-07-30
- 2020-07-01
- 2021-05-11
- 2020-01-13
- 2021-04-26
- 2020-01-07
- 2020-09-22
- 2021-03-07
- 2019-12-01
- 2021-06-14
- 2021-04-24
- 2020-08-15
- 2020-05-07
- 2019-11-16
- 2020-03-23
- 2020-04-10
- 2019-11-27
- 2021-08-08
- 2020-12-31
- 2020-09-30
- 2021-05-12
- 2020-11-30
- 2020-05-15
- 2019-12-18
- 2021-05-14