网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
单选题
(2009)设α1,α2,α3是三维列向量,│A│=α│1,α2,α3│,则与│A│相等的是:()
A

│α1,α2,α3│

B

│-α2,-α3,-α1│

C

│α1+α2,α2+α3,α3+α1│

D

│α1,α2,α3+α2+α1│


参考答案

参考解析
解析: 暂无解析
更多 “单选题(2009)设α1,α2,α3是三维列向量,│A│=α│1,α2,α3│,则与│A│相等的是:()A │α1,α2,α3│B │-α2,-α3,-α1│C │α1+α2,α2+α3,α3+α1│D │α1,α2,α3+α2+α1│” 相关考题
考题 设向量组a1,a2,a3线性无关,则下列向量组中线性无关的是()。 A、a1-a2,a2-a3,a3-a1B、a1,a2,a3+a1C、a1,a2,2a1-3a2D、a2,a3,2a2+a3

考题 设α1,α2,α3,α4是4维列向量,矩阵A=(α1,α2,α3,α4).如果|A|=2,则|-2A|=( )A.-32 B.-4C.4 D.32

考题 设α1,α2,α3,α4 是三维实向量,则( )A. α1,α2,α3,α4一定线性无关 B. α1一定可由α2,α3,α4线性表出C. α1,α2,α3,α4一定线性相关 D. α1,α2,α3一定线性无关

考题 设向量α=(1,2,-2),β=(2,a,3),且α与β正交,则a=_________.

考题 设向量x垂直于向量a=(2,3,-1)和b=(1,-2,3)且与c=(2,-1,1)的数量积为-6,则向量x=( )。A.(-3,3,3) B.(-3,1,1) C.(0,6,0) D.(0,3,-3)

考题 设α,β为四维非零列向量,且α⊥β,令A=αβ^T,则A的线性无关特征向量个数为().A.1 B.2 C.3 D.4

考题 设a1,a2,a3是3维列向量, A = a1,a2,a3 ,则与 A 相等的是: A. a1,a2,a3 B. -a2,-a3,-a1 C. a1+a2,a2+a3,a3+a1 D. a1,a1+a2,a1+a2+a3

考题 设向量α与向量β的夹角θ=π/3,模|α|=1,|β|=2,则模|α+β|等于(  )

考题 设a1,a2,a3是二维列向量, A = a1,a2,a3 ,则与 A 相等的是: A. a1,a2,a3 B. -a1,-a2,-a3 C. a1+a2,a2+a3,a3+a1 D. a1,a2,a1+a2+a3

考题 设α,β为三维非零列向量,(α,β)=3,A=αβ^T,则A的特征值为_______.

考题 设矩阵,α1,α2,α3为线性无关的3维列向量组,则向量组Aα1,Aα2,Aα3的秩为_________.

考题 设α1,α2,α3均为三维向量,则对任意常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的 A.A必要非充分条件 B.充分非必要条件 C.充分必要条件 D.既非充分也非必要条件

考题 设a1,a2,a3是三维列向量, A = a1,a2,a3 ,则与 A 相等的是: A. a1,a2,a3 B. -a1,-a2,-a3 C. a1+a2,a2+a3,a3+a1 D. a1,a2,a1+a2+a3

考题 设|A|=0,α1、α2、是线性方程组Aχ=0的一个基础解系,Aα3=α3≠0,则下列向量中不是矩阵A的特征向量的是( )。A、3α1+α2 B、α1-3α2 C、αl+3α3 D、3α3

考题 设列向量p=[1,-1,2]T是3阶方阵相应特征值λ的特征向量,则特征值λ等于().A、3B、5C、7D、不能确定

考题 单选题设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是(  ).A 向量组α1,α2,…,αm可以由β1,β2,…,βm线性表示B 向量组β1,β2,…,βm可以由α1,α2,…,αm线性表示C 向量组α1,…,αm与向量组β1,…,βm等价D 矩阵A=(α1,…,αm)与矩阵B=(β1,…,βm)β)m

考题 单选题设A是三阶矩阵,α1=(1,0,1)T,α2=(1,1,0)T是A的属于特征值1的特征向量,α3=(0,1,2)T是A的属于特征值-1的特征向量,则:()A α1-α2是A的属于特征值1的特征向量B α1-α3是A的属于特征值1的特征向量C α1-α3是A的属于特征值2的特征向量D α1+α2+α3是A的属于特征值1的特征向量

考题 填空题设3阶方阵A=(α(→),γ(→)1,γ(→)2),B=(β(→),γ(→)1,γ(→)2),其中α(→),β(→),γ(→)1,γ(→)2都是3维列向量,且|A|=3,|B|=4,则|5A-2B|=____。

考题 单选题设α(→)1,α(→)2,α(→)3,α(→)4是4维非零列向量组,A=(α(→)1,α(→)2,α(→)3,α(→)4),A*是A的伴随矩阵,已知方程组AX(→)=0(→)的基础解系为k(1,0,2,0)T,则方程组A*X(→)=0(→)的基础解系为(  )。A α(→)1,α(→)2,α(→)3B α(→)1+α(→)2,α(→)2+α(→)3,3α(→)3C α(→)2,α(→)3,α(→)4D α(→)1+α(→)2,α(→)2+α(→)3,α(→)3+α(→)4,α(→)4+α(→)1

考题 单选题设向量组α1,α2,α3线性无关,则下列向量组线性相关的是(  ).A α1-α2,α2-α3,α3-α1B α1+α2,α2+α3,α3+α1C α1-2α2,α2-2α3,α3-2α1D α1+2α2,α2+2α3,α3+2α1

考题 单选题设A为3阶方阵,α(→)1,α(→)2,α(→)3是互不相同的3维列向量,且都不是方程组Ax(→)=0(→)的解,若B=(α(→)1,α(→)2,α(→)3)满足r(AB)<r(A),r(AB)<r(B),则r(AB)等于(  )。A 3B 2C 1D 0

考题 单选题设向量组α(→)1,α(→)2,α(→)3线性无关,向量β(→)1可由α(→)1,α(→)2,α(→)3线性表示,而向量β(→)2不能由α(→)1,α(→)2,α(→)3线性表示,则对任意常数,必有(  )。A α(→)1,α(→)2,α(→)3,kβ(→)1+β(→)2线性无关B α(→)1,α(→)2,α(→)3,kβ(→)1+β(→)2线性相关C α(→)1,α(→)2,α(→)3,β(→)1+kβ(→)2线性无关D α(→)1,α(→)2,α(→)3,β(→)1+kβ(→)2线性相关

考题 单选题设向量x垂直于向量a=(2,3,-1)和b=(1,-2,3),且与c=(2,-1,1)的数量积为-6,则向量x=(  )。A (-3,3,3)B (-3,1,1)C (0,6,0)D (0,3,-3)

考题 单选题设n维列向量组α(→)1,α(→)2,…,α(→)m(m<n)线性无关,则n维列向量组β(→)1,β(→)2,…,β(→)m线性无关的充分必要条件是(  )。A 向量组α(→)1,α(→)2,…,α(→)m可以由β(→)1,β(→)2,…,β(→)m线性表示B 向量组β(→)1,β(→)2,…,β(→)m可以由α(→)1,α(→)2,…,α(→)m线性表示C 向量组α(→)1,α(→)2,…,α(→)m与向量组β(→)1,β(→)2,…,β(→)m等价D 矩阵A=(α(→)1,α(→)2,…,α(→)m)与矩阵B=(β(→)1,β(→)2,…,β(→)m)等价

考题 单选题设3阶方阵A=(α(→),γ(→)1,γ(→)2),B=(β(→),γ(→)1,γ(→)2),其中α(→),β(→),γ(→)1,γ(→)2都是3维列向量,且|A|=3,|B|=4,则|5A-2B|=(  )。A 48B 64C 63D 49

考题 单选题设列向量p=[1,-1,2]T是3阶方阵相应特征值λ的特征向量,则特征值λ等于().A 3B 5C 7D 不能确定

考题 单选题设向量α1、α2、α3线性无关,向量β1可由αl、α2、α3线性表示,向量β2不能由α1、α2、α3线性表示,则对任意常数k必有(  ).A α1、α2、α3、kβ1+β2线性无关B α1、α2、α3、kβ1+β2线性相关C α1、α2、α3、β1+kβ2线性元关D α1、α2、α3、β1+kβ2线性相关