网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
单选题
设n维列向量组α(→)1,α(→)2,…,α(→)m(m<n)线性无关,则n维列向量组β(→)1,β(→)2,…,β(→)m线性无关的充分必要条件是( )。
A
向量组α1,α2,…,αm可以由β1,β2,…,βm线性表示
B
向量组β1,β2,…,βm可以由α1,α2,…,αm线性表示
C
向量组α1,α2,…,αm与向量组β1,β2,…,βm等价
D
矩阵A=(α1,α2,…,αm)与矩阵B=(β1,β2,…,βm)等价
参考答案
参考解析
解析:
例如α1=(1,0,0,0),α2=(0,1,0,0),β1=(0,0,1,0),β2=(0,0,0,1),各自都线性无关,但它们之间不能相互线性表示,也就不可能有等价关系,排除A、B、C项;
D项,矩阵A与矩阵B等价,则它们的秩相等,故向量组β1,β2,…,βm线性无关。
例如α1=(1,0,0,0),α2=(0,1,0,0),β1=(0,0,1,0),β2=(0,0,0,1),各自都线性无关,但它们之间不能相互线性表示,也就不可能有等价关系,排除A、B、C项;
D项,矩阵A与矩阵B等价,则它们的秩相等,故向量组β1,β2,…,βm线性无关。
更多 “单选题设n维列向量组α(→)1,α(→)2,…,α(→)m(m<n)线性无关,则n维列向量组β(→)1,β(→)2,…,β(→)m线性无关的充分必要条件是( )。A 向量组α(→)1,α(→)2,…,α(→)m可以由β(→)1,β(→)2,…,β(→)m线性表示B 向量组β(→)1,β(→)2,…,β(→)m可以由α(→)1,α(→)2,…,α(→)m线性表示C 向量组α(→)1,α(→)2,…,α(→)m与向量组β(→)1,β(→)2,…,β(→)m等价D 矩阵A=(α(→)1,α(→)2,…,α(→)m)与矩阵B=(β(→)1,β(→)2,…,β(→)m)等价” 相关考题
考题
设A为m×n阶矩阵,则齐次线性方程组AX=0只有零解的充分必要条件是(64)。A.A的列向量组线性无关B.A的列向量组线性相关C.A的行向量组线性无关D.A的行向量组线性相关A.A的列向量组线性无关B.A的列向量组线性相关C.A的行向量组线性无关D.A的行向量组线性相关
考题
设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是( )。
A、矩阵A的任意两个列向量线性相关
B、矩阵A的任意两个列向量线性无关
C、矩阵A的任一列向量是其余列向量的线性组合
D、矩阵A必有一个列向量是其余列向量的线性组合
考题
设α1,α2,α3,β是n维向量组,已知α1,α2,β线性相关,α2,α3,β线性无关,则下列结论中正确的是()。A、β必可用α1,α2线性表示B、α1必可用α2,α3,β线性表示C、α1,α2,α3必线性无关D、α1,α2,α3必线性相关
考题
3维向量组A:α1,α2,…,αM线性无关的充分必要条件是().A、对任意一组不全为0的数k1,k2,…,kM,都有后B、向量组A中任意两个向量都线性无关C、向量组A是正交向量组D、αM不能由线性表示
考题
单选题设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是( ).A
向量组α1,α2,…,αm可以由β1,β2,…,βm线性表示B
向量组β1,β2,…,βm可以由α1,α2,…,αm线性表示C
向量组α1,…,αm与向量组β1,…,βm等价D
矩阵A=(α1,…,αm)与矩阵B=(β1,…,βm)β)m
考题
单选题n维向量组α(→)1,α(→)2,…,α(→)s线性无关的充分条件是( )。A
α(→)1,α(→)2,…,α(→)s中没有零向量B
向量组的个数不大于维数,即s≤nC
α(→)1,α(→)2,…,α(→)s中任意两个向量的分量不成比例D
某向量β(→)可由α(→)1,α(→)2,…,α(→)s线性表示,且表示法唯一
考题
单选题设A是m×n的非零矩阵,B是m×1非零矩阵,满足AB=0,以下选项中不一定成立的是:()A
A的行向量组线性相关B
A的列向量组线性相关C
B的行向量组线性相关D
r(A)+r(B)≤n
考题
单选题设n阶方阵A=(α(→)1,α(→)2,…,α(→)n),B=(β(→)1,β(→)2,…,β(→)n),AB=(γ(→)1,γ(→)2,…,γ(→)n),记向量组(Ⅰ):α(→)1,α(→)2,…,α(→)n;(Ⅱ): β(→)1,β(→)2,…,β(→)n;(Ⅲ):γ(→)1,γ(→)2,…,γ(→)n。如果向量组(Ⅲ)线性相关,则( )。A
向量组(Ⅰ)与(Ⅱ)都线性相关B
向量组(Ⅰ)线性相关C
向量组(Ⅱ)线性相关D
向量组(Ⅰ)与(Ⅱ)中至少有一个线性相关
考题
单选题下列说法不正确的是( )。A
s个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则加入k个n维向量β(→)1,β(→)2,…,β(→)k后的向量组仍然线性无关B
s个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则每个向量增加k维分量后得到的向量组仍然线性无关C
s个n维向量α(→)1,α(→)2,…,α(→)s线性相关,则加入k个n维向量β(→)1,β(→)2,…,β(→)k后得到的向量组仍然线性相关D
s个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则减少一个向量后得到的向量组仍然线性无关
考题
单选题n维向量组,α(→)1,α(→)2,…,α(→)s(3≤s≤n)线性无关的充要条件是( )。A
存在一组不全为0的数k1,k2,…,ks,使kα(→)1+k2α(→)2+…+ksα(→)s≠0(→)B
α(→)1,α(→)2,…,α(→)s中任意两个向量都线性无关C
α(→)1,α(→)2,…,α(→)s中存在一个向量不能由其余向量线性表示D
α(→)1,α(→)2,…,α(→)s中任何一个向量都不能由其余向量线性表示
考题
单选题设α1,α2,α3,β是n维向量组,已知α1,α2,β线性相关,α2,α3,β线性无关,则下列结论中正确的是()。A
β必可用α1,α2线性表示B
α1必可用α2,α3,β线性表示C
α1,α2,α3必线性无关D
α1,α2,α3必线性相关
考题
单选题设n维向量组(Ⅰ)α(→)1,α(→)2,…,α(→)s线性无关,(Ⅱ)β(→)1,β(→)2,…,β(→)t线性无关,且α(→)i不能由(Ⅱ)线性表示(i=1,2,…,s),且β(→)j不能由(Ⅰ)线性表示(j=1,2,…,t),则向量组α(→)1,α(→)2,…,α(→)s,β(→)1,β(→)2,…,β(→)t( )。A
一定线性相关B
一定线性无关C
可能线性相关,也可能线性无关D
既不线性相关,也不线性无关
考题
单选题设α(→)1,α(→)2,…,α(→)s和β(→)1,β(→)2,…,β(→)t为两个n维向量组,且秩(α(→)1,α(→)2,…,α(→)s)=秩(β(→)1,β(→)2,…,β(→)t)=r,则( )。A
此两个向量组等价B
秩(α(→)1,α(→)2,…,α(→)s,β(→)1,β(→)2,…,β(→)t)=rC
当α(→)1,α(→)2,…,α(→)s可以由β(→)1,β(→)2,…,β(→)t线性表示时,此二向量组等价D
s=t时,二向量组等价
考题
单选题设α(→)1,α(→)2,…,α(→)s均为n维列向量,A是m×n矩阵,下列选项正确的是( )。A
若α(→)1,α(→)2,…,α(→)s线性相关,则Aα(→)1,Aα(→)2,…,Aα(→)s线性相关B
若α(→)1,α(→)2,…,α(→)s线性相关,则Aα(→)1,Aα(→)2,…,Aα(→)s线性无关C
若α(→)1,α(→)2,…,α(→)s线性无关,则Aα(→)1,Aα(→)2,…,Aα(→)s线性相关D
若α(→)1,α(→)2,…,α(→)s线性无关,则Aα(→)1,Aα(→)2,…,Aα(→)s线性无关
热门标签
最新试卷