网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
填空题
微分方程xy″+3y′=0的通解为____。
参考答案
参考解析
解析:
原微分方程为xy″+3y′=0,令y′=p,则y″=p′,则原方程变形为xp′=-3p,即dp/dx=-3p/x,分离变量并两边积分得∫(dp/p)=-∫(3/x)dx,ln|p|=-3ln|x|+ln|c|,p=c1x-3,即y′=c1/x3。故y=-c1/(2x2)+c2,此即为原微分方程的通解。
原微分方程为xy″+3y′=0,令y′=p,则y″=p′,则原方程变形为xp′=-3p,即dp/dx=-3p/x,分离变量并两边积分得∫(dp/p)=-∫(3/x)dx,ln|p|=-3ln|x|+ln|c|,p=c1x-3,即y′=c1/x3。故y=-c1/(2x2)+c2,此即为原微分方程的通解。
更多 “填空题微分方程xy″+3y′=0的通解为____。” 相关考题
考题
在下列微分方程中,以函数y=C1e^-x+C2e^4x(C1,C2为任意常数)为通解的微分方程是( )。A. y″+3y′-4y=0
B. y″-3y′-4y=0
C. y″+3y′+4y=0
D. y″+y′-4y=0
考题
单选题以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是( )。[2012年真题]A
y″-2y′-3y=0B
y″+2y′-3y=0C
y″-3y′+2y=0D
y″-2y′-3y=0
考题
填空题微分方程xy′+y=0满足条件y(1)=1的解释y=____。
热门标签
最新试卷