网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
单选题
教师通过课件展示一个圆,然后,教师:同学们,我们已经认识了一个特殊的平面图形——圆,说说你们已经知道了哪些关于圆的知识?学生:知道圆的特征,圆的各部分名称……这种方法是()。
A

复述式巩固

B

问答式巩固

C

提问式巩固

D

图像式巩固


参考答案

参考解析
解析: 暂无解析
更多 “单选题教师通过课件展示一个圆,然后,教师:同学们,我们已经认识了一个特殊的平面图形——圆,说说你们已经知道了哪些关于圆的知识?学生:知道圆的特征,圆的各部分名称……这种方法是()。A 复述式巩固B 问答式巩固C 提问式巩固D 图像式巩固” 相关考题
考题 ()不能进行形状变。 A.用绘图工具画一个圆B.将用绘图工具画一个圆,再转换成图形(Graphio)等符号(Symbol)中的图形符号分解(BreakAport)C.用绘图工具画一个圆,再转换成图形(GraphiC.符号(Symbol)D.用绘图工具画一个方形

考题 一项旨在培养小学生动手能力的教学实验研究,开出了一节名为“找圆心”的数学观摩课.执教教师先让学生说说生活中见到过哪些圆的图形,然后引导他们利用圆形物在纸上画圆,并让每个学生把画好的圆剪切下来,这样每个学生手上都有了一个不知道圆心的圆纸片.怎样找到圆心呢?老师用投影仪提示.“将手中的圆对折、展开;换个方向,再对折,两条褶痕的交叉点就是圆心.”学生按提示操作,果然找到了圆心.问题:试从教学理念、教学目标、教学方法的角度评析这节数学课.

考题 一位体育教师在讲授前滚翻和后滚翻的动作技能时,他首先讲解了前滚翻和后滚翻的动作要领,然后根据学生已有的知识经验,问学生:“什么样的东西最容易滚来滚去?”同学们齐声回答道:“圆的东西。”教师又进一步问:“既然圆的东西最容易滚来滚去,你们能不能在做这个动作时把身体变圆一点呢?下面我做一次示范,你们要认真看。”然后教师请学生们按照要求进行分组训练。很快全班学生便掌握了前滚翻和后滚翻的动作技能。请问该体育教师主要运用了哪四种教学方法?

考题 两个教师在教学《圆的认识》一课时:教师A在教学“半径和直径关系”时,组织学生动手测量、制表,然后引导学生发现“在同一个圆中,圆的半径是直径的一半”。 教师B在教学这一知识点时是这样设计的:先让学生自学,再让学生表述半径与直径的关系,然后问学生可以用什么方法来证明,学生再说出自己的观点,体现的是学生要学,学生在自己通过猜测、验证获得知识。 请比较分析这两位教师的教学设计及启示。

考题 “这是不是一个圆”“以下图形哪些是圆”这样的问题时,学习者主要使用的是陈述性知识。() 此题为判断题(对,错)。

考题 两位教师上《圆的认识》一课。教师A在教学“半径和直径关系”时。组织学生动手测量、制表,然后引导学生发现“在同一 圆中.圆的半径是直径的一半”。教师B在教学这一知识点时是这样设计的:师:通过自学,你知道半径和直径的关系吗?生1:在同一圆里,所有的半径是直径的一半。生2:在同一圆里,所有的直径是半径的2倍。生3:如果用字母表示,则是d=2r。r=d/2。师:这是同学们通过自学获得的。你们能用什么方法证明这一结论是正确的呢?生1:我可以用尺测量一下直径和半径的长度,然后考查它们之间的关系。师:那我们一起用这一方法检测一下。师:还有其他方法吗?生2:通过折纸,我能看出它们的关系。问题:(1)两案例的主要共同点是什么?是否真正了解学生的起点?(2)从线性与非线性的观点分析两教法。预测两教法的教学效果

考题 运行以下程序后,输出的图形是( )。 Forr=O To 150 Circle(320,240),r Fori=1 To 1000 Nexti NextrA.一个固定的空心圆B.一个半径逐渐变大的空心圆C.一个固定的实心圆D.一个半径逐渐变大的实心圆

考题 老师在给同学们讲“圆周率”这个概念。只见她把几个大小不同的圆盘展示给学生:“大家看,这几个圆盘有什么不同?”同学们说,颜色和大小都不同。然后,老师补充说还有直径、周长等部分也不一样。老师强调指出:每个圆盘可以分解为圆面、直径、周长和颜色等各个部分,而每个圆盘又都是由这些部分组成的。在此基础上,让学生讨论几个圆盘的不同点(圆面大小、直径、周长和颜色)和相同处(周长都是直径的三倍多一点),继而引导学生抛开几个圆盘的不同点(非本质属性),抽出共同点(本质属性)。然后强调,只要是圆,不论大小,他们都有一个固定关系,即圆的周长总是直径的三倍多一点(大约是3.14倍),这个倍数关系我们叫它圆周率,接着问学生:“什么叫圆周率?”同学们基本上都认识和掌握了圆周率这个概念。老师接着说:“大家都认识了圆周率,希望大家记住,今后我们还会用它来帮助计算和解决有关圆的问题。” 试分析这位教师在教学过程中运用了哪些思维过程。

考题 初中数学《圆的对称性》 一、考题回顾 二、考题解析 【教学过程】 (一)引入新课 教师引导学生在纸上画两个大小相同的圆,然后将其剪下来,引导学生思考:将两个圆放在一起会怎么样?若将其中一个转动,两个圆是否还会重合?通过这两个问题让学生认识到圆是旋转的对称图形,进一步提问:对称中心是什么?进一步引导学生思考与圆的对称性有关的性质有哪些?引出课题。 (二)探索新知 对于导入中的问题,教师引导学生画两个完全相同的圆,然后将其中的一个圆剪下一个扇形AOB,引导学生将扇形AOB放在另外一个圆上,将顶点放在圆心上,画出扇形AOB,然后再引导学生将其旋转,再画出扇形A'OB',观察前后两个扇形,并思考:这两个扇形的中的圆心角、弦、弧有什么样的关系? 预设:两个扇形是完全相同的。 提问:扇形的大小由什么确定? 预设:扇形的大小由圆心角确定。 提问:能否用一句话说说上述的发现。 预设:如果圆心角相等,那么它们所对的弧相等,所对的弦相等。 进一步提问:在同一个圆呢?还是在两个圆中?若在两个圆中存在,这两个圆是什么关系。 师生共同总结得出:在等圆和同一个圆中,如果圆心角相等,那么它们所对的弧相等,所对的弦相等。 提问:能否说说上述结论中的条件和结论。 预设:条件是在同圆或等圆中,圆心角相同,结论是:①所对的弧相等,②所对的弦相等。 引导学生思考:如果互换条件和结论,那命题是否还正确? 预设1:在同圆或等圆中,所对的弧相等,那么它们所对的圆心角相等,所对的弦也相等。 预设2:在同圆或等圆中,所对的弦相等,那么它们所对的圆心角相等,所对的弧也相等。 最后师生共同得出:在同圆或等圆中,已知三个量中的其中一个量相等,就可以得出另外两个量也相等。 组织学生进行动手操作,折一折,说说圆是什么样的图形?进一步提问它的对称轴是什么?对称轴有多少条? 最后师生共同得出:圆是对称图形,它的任意一条直径所在的直线都是它的对称轴。 引导学生思考:怎样将圆平均分成2等分,4等分、8等分?进一步提问还可以将圆平均分成多少等分? 最后师生共同得到:将圆沿直径对折平均分成2等分,再对折一次,平均成4等分,再对折就可以将圆平均分成8等分,再对折,就可以平均分成16等分了,再对折32等分等等。 (三)课堂练习 例1 (四)小结作业 提问:今天有什么收获? 课后作业:思考当直径与弦垂直时,那所对的弧有什么关系? 【板书设计】 1.什么事对称图形?圆的对称轴有多少条?? 2.垂径定理是什么?

考题 小学数学《圆的面积》 一、考题回顾 二、考题解析 【教学过程】 (一)创设情景,导入新课 一只小狗被它的主人用一根长1米的绳子栓在草地上,问小狗能够活动的范围有多大? 问题:1.小狗能够活动的最大面积是一个什么图形? 2.如何求圆的面积呢? (二)师生互动,探索新知 (1)引导:平行四边形面积可以转化成长方形面积,那么是否可以将圆转化成已学的图形呢? (2)实验操作:教师将课前准备好的圆分给各小组(前后四人为一组)。请同学们试试看,是否可以将圆转化成为长方形。 (3)动画展示: 把圆分成4份、8份,然后拼图。 ①拼成的平行四边形的高相当于圆的半径,它的底相当于圆周长的一半。 ②拼成的长方形的宽相当于圆的半径,长相当于圆周长的一半。 当我们把圆平均分得的份数越多,拼成的图形就越接近于一个长方形,它的面积也就越接近了这个长方形的面积。 (4)得出结论: 问1:既然圆的面积无限接近于长方形。那么我们如何根据长方形的面积来推导圆的面积公式呢? 问2:长方形的长、宽与圆有什么关系呢? 再次展示动画。 1.简单说一说引导学生学习圆的面积? 2.对于圆的面积公式的推导过程体现了数学中的哪种思想方法?

考题 有位体育教师在讲授前滚翻和后滚翻的动作技能时,他首先讲解了前滚翻和后滚翻的动作要领,然后他根据学生已有的知识经验,问学生:“什么样的东西最容易滚来滚去”同学们齐声回答道:“圆的东西。”教师又进一步问:“既然圆的东西最容易滚来滚去,你们能不能在做这个动作时把身体变圆一点呢下面我做一次示范你们要认真看。”然后教师请学生们按照要求进行分组训练,很快全班学生便掌握了前滚翻和后滚翻的动作技能。 问题:该体育教师主要运用了哪些教学方法

考题 圆在画面上,透视就是其本身;圆所在的平面平行画面,圆的透视是一个圆;圆所在的平面通过视点,圆的透视就是一条()。A、双曲线B、抛物线C、直线D、曲线

考题 绘制同心圆,然后移动圆心,两个圆同时移动,并保持是同心圆。采用的方法有()A、选中第一个圆的圆心,绘制第二个圆B、绘制出两个圆,并移动其中一个圆,使圆心与另一个圆的圆心重合C、绘制出两个圆,并依次选中,然后进行“水平居中”和“垂直居中”D、按顺序选中圆和圆心,按照缩放变换获得第二个圆

考题 两位教师上《圆的认识》一课。 教师A在教学“半径和直径关系”时,组织学生动手测量、制表,然后引导学生发现“在同一个圆中,圆的半径是直径的一半”。 教师B在教学这一知识点时是这样设计的:师:通过自学,你知道半径和直径的关系吗?生1:在同一个圆里,所有的半径是直径的一半。 生2:在同一个圆里,所有的直径是半径的2倍。生3:如果用字母表示,则是d=2r,r=d/2。 师:这是同学们通过自学获得的。你们能用什么方法证明这一结论是正确的呢?生1:我可以用尺测量一下直径和半径的长度,然后考查它们之间的关系。 师:那我们一起用这一方法检测一下,还有其他方法吗?生2:通过折纸,我能看出它们的关系。 问题(一):两案例的主要共同点是什么?是否真正了解学生的起点? 问题(二):从线性与非线性的观点分析两教法,预测两教法的教学效果。

考题 一个圆在平面上的射影图形是()。A、圆B、椭圆C、线段D、圆或椭圆或线段

考题 下面哪一组图形之间肯定能够进行布尔运算?()A、一个圆将一个矩形完全包容。B、一个圆将一个圆完全包容。C、两个封闭的二维图形,而且有重叠的部分。D、一个矩形将文字完全包容。

考题 下面哪一组二维图形之间不能进行布尔运算()。A、有两个相交的圆B、一个圆和一个螺旋线(有相交)C、一个圆和一个矩形(有相交)D、一个圆和一个多边形(有相交)

考题 一个因果稳定的离散系统,其H(z)的全部极点须分布在z平面的()A、单位圆外B、单位圆内C、单位圆上D、单位圆内或单位圆上

考题 教师通过课件展示一个圆,然后,教师:同学们,我们已经认识了一个特殊的平面图形——圆,说说你们已经知道了哪些关于圆的知识?学生:知道圆的特征,圆的各部分名称……这种方法是()。A、复述式巩固B、问答式巩固C、提问式巩固D、图像式巩固

考题 两位教师上《圆的认识》一课: 教师A在教学"半径和直径关系"时,组织学生动手测量、制表,然后引导学生发现"在同一圆中,圆的半径是直径的一半"。 教师B在教学这一知识点时是这样设计的: 师:通过自学,你知道半径和直径的关系吗? 生1:在同一圆里,所有的半径是直径的一半。 生2:在同一圆里,所有的直径是半径的2倍。 生3:如果用字母表示,则是d=2r。r=d/2。 师:这是同学们通过自学获得的,你们能用什么方法证明这一结论是正确的呢? 生1:我可以用尺测量一下直径和半径的长度,然后考查它们之间的关系。 师:那我们一起用这一方法检测一下。 师:还有其他方法吗? 生2:通过折纸,我能看出它们的关系。 两个案例的主要共同点是什么?是否真正了解学生的起点?

考题 单选题()不能进行形状变。A 用绘图工具画一个圆B 将用绘图工具画一个圆,再转换成图形(Graphio)等符号(Symbol)中的图形符号分解(BreakAport)C 用绘图工具画一个圆,再转换成图形(GraphiC.符号(Symbol)D 用绘图工具画一个方形

考题 问答题阅读下面材料,回答问题。两个教师在教学《圆的认识》一课时:教师A:在教学“半径和直径关系”时,组织学生动手测量、制表,然后引导学生发现“在同一个圆中,圆的半径是直径的一半”。教师B:在教学这一知识点时是这样设计的:先让学生自学,再让学生表述半径与直径的关系,然后问学生可以用什么方法来证明,学生再说出自己的观点。体现的是学生要学,学生再自己通过猜测、验证获得知识。问题:请比较分析这两位教师的教学设计及启示。(20分)

考题 单选题下面哪一组图形之间肯定能够进行布尔运算?()A 一个圆将一个矩形完全包容。B 一个圆将一个圆完全包容。C 两个封闭的二维图形,而且有重叠的部分。D 一个矩形将文字完全包容。

考题 问答题两位教师上《圆的认识》一课:教师A在教学"半径和直径关系"时,组织学生动手测量、制表,然后引导学生发现"在同一圆中,圆的半径是直径的一半"。教师B在教学这一知识点时是这样设计的:师:通过自学,你知道半径和直径的关系吗?生1:在同一圆里,所有的半径是直径的一半。生2:在同一圆里,所有的直径是半径的2倍。生3:如果用字母表示,则是d=2r。r=d/2。师:这是同学们通过自学获得的,你们能用什么方法证明这一结论是正确的呢?生1:我可以用尺测量一下直径和半径的长度,然后考查它们之间的关系。师:那我们一起用这一方法检测一下。师:还有其他方法吗?生2:通过折纸,我能看出它们的关系。两个案例的主要共同点是什么?是否真正了解学生的起点?

考题 单选题一个圆在平面上的射影图形是()。A 圆B 椭圆C 线段D 圆或椭圆或线段

考题 单选题下面哪一组二维图形之间不能进行布尔运算()。A 有两个相交的圆B 一个圆和一个螺旋线(有相交)C 一个圆和一个矩形(有相交)D 一个圆和一个多边形(有相交)

考题 单选题把平面上所有的单位向量归结到共同的始点,那么这些向量的终点所构成的图形是(  ).A 一条线段B 一个圆面C 圆上的一群孤立点D 一个圆