网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设A,B,A+B,A-1+ B-1均为n阶可逆矩阵,则(A-1+ B-1)-1=( )。

A、A-1+ B-1
B、A+B
C、A(A+B) -1 B
D、(A+B) -1

参考答案

参考解析
解析:
更多 “设A,B,A+B,A-1+ B-1均为n阶可逆矩阵,则(A-1+ B-1)-1=( )。 A、A-1+ B-1 B、A+B C、A(A+B) -1 B D、(A+B) -1” 相关考题
考题 设A,B均为n阶矩阵,(I一B)可逆,则矩阵方程A+BX=X的解X=()。

考题 设A,B均为n阶可逆矩阵,求证:(AB)*=B*A*。

考题 设A和B均为n阶矩阵,则必有( )。 A.|A+B|=|A|+|B| B.AB=BA C.|AB|=|BA| D.

考题 设A为n阶可逆矩阵,则下面各式恒正确的是( ).

考题 设A,B为n阶矩阵,则下列结论正确的是().A.若A,B可逆,则A+B可逆 B.若A,B可逆,则AB可逆 C.若A+B可逆,则A-B可逆 D.若A+B可逆,则A,B都可逆

考题 设A,B为n阶可逆矩阵,则().

考题 设A、B都是n阶方阵,下面结论正确的是A.若A、B均可逆,则A+B可逆. B.若A、B均可逆,则AB可逆. C.若A+B可逆,则A-B可逆. D.若A+B可逆,则A,B均可逆.

考题 设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)*等于( )。 A.-A.* B.A.* C.(-1)nA.* D.(-1)n-1A.*

考题 设N阶矩阵A与对角矩阵合同,则A是().A.可逆矩阵 B.实对称矩阵 C.正定矩阵 D.正交矩阵

考题 设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则

考题 设A,B均为4阶矩阵,且|A|=3,|B|=-2,则|-(A'B-1)2|的值为( )。

考题 设A、B都是n阶可逆矩阵,且(AB)2=I,则(BA)2的值为( )。

考题 设A、B都是n阶可逆矩阵,则 A. (-3)n A B -1 B. -3 A T B T C. -3 A T B -1 D. (-3)2n A B -1

考题 设A1,A2分别为m阶,n阶可逆矩阵,分块矩阵.证明:A可逆,且

考题 设A,B为n阶正定矩阵.证明:A+B为正定矩阵.

考题 设A为n阶非零矩阵,E为n阶单位矩阵,若A^3=O,则 A.AE-A不可逆,E+A不可逆 B.E-A不可逆,E+A可逆 C.E-A可逆,E+A可逆 D.E-A可逆,E+A不可逆

考题 设A和B均为n阶矩阵,则必有( )。《》( )

考题 设a为N阶可逆矩阵,则( ).《》( )

考题 设A.B均为n阶矩阵,则下列正确的为( )。 A、det(A+B)=detA+detB B、AB=BA C、det(AB)=det(AB) D、(A-B)2=A2-2AB+B2

考题 均为n阶可逆矩阵,则=( )。 A. B.A+B C. D.

考题 设A和B均为n阶矩阵(n>1),m是大于1的整数,则必有(  )。

考题 设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)n等于( )。 A. -An B. An C. (-1)nAn D. (-1)n-1An

考题 设A,B都是n阶矩阵,若有可逆矩阵P使得P-1AP=B,则称矩阵A与矩阵B()。A、等价B、相似C、合同D、正交

考题 设A,N,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)=()。A、A-1+B-1B、A+BC、C.A(A+-1BD、D.(A+-1

考题 设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)*等于()。A、-A*B、A*C、(-1)nA*D、(-1)n-1A*

考题 单选题设A,B都是n阶矩阵,若有可逆矩阵P使得P-1AP=B,则称矩阵A与矩阵B()。A 等价B 相似C 合同D 正交

考题 单选题设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)*等于()。A -A*B A*C (-1)nA*D (-1)n-1A*