考题
设X1,X2是来自N(μ,1)的样本,则()是总体均值μ的无偏估计。
考题
设X1,X2,…,Xn是来自总体的样本,且EX=μ,DX=б2则()是μ的无偏估计。
考题
设总体X~N(2,42),(x1,x2,…,Xn)是来自X的简单随机样本,则下面结果正确的是( )。A.B.C.D.
考题
设X1,X2,…,Xn是来自正态总体N(μ,σ2)的一个样本,则有( )。
考题
设(X1,X2,…,Xn)(N≥2)为标准正态总体X的简单随机样本,则().
考题
设(X1,X2,…,Xn)是抽自正态总体N(u,σ2)的一个容量为10的样本,
考题
从正态总体X~N(0,σ^2)中抽取简单随机样本X1,X2,…,Xn,则可作为参数σ^2的无偏估计量的是().
考题
设总体X~N(μ,σ^2),X1,X2,…,Xn为总体X的简单随机样本,X与S^2分别为样本均值与样本方差,则().
考题
设总体X的概率密度为
未知参数,X1,X2, ...Xn是来自总体X的样本,则θ的矩估计量是:
考题
设总体X的概率密度为而x1,x2,...,xn 是来自总体的样本值,则未知参数θ的最大似然估计值是:
考题
设总体X的概率密度为f(x)=其中θ>-1是未知参数,X1,X2,...Xn是来自总体X的样本,则θ的矩估计量是:
考题
设总体X的分布函数为
其中未知参数β>1,X1,X2,…,Xn为来自总体X的简单随机样本,求:
(Ⅰ)β的矩估计量;(Ⅱ)β的最大似然估计量.
考题
设总体X的分布律为P(X=i)=(i=1,2,…,θ,X1,X2,…,Xn为来自总体的简单随机样本,则θ的矩估计量为_______(其中θ为正整数).
考题
设总体X~U(θ,θ),X1,X2,…,Xn是来自总体X的样本,求θ1,θ2的矩估计和最大似然估计.
考题
设总体X的密度函数为f(x)=,(X1,X2,…,Xn)为来自总体X的简单随机样本.(1)求θ的矩估计量θ;(2)求D(θ).
考题
设总体X的概率密度为f(x)=,其中θ>-1是未知参数,X1,
X2,…,Xn是来自总体X的一个容量为n的简单随机样本,分别用矩估计法和最大似然估计法求参数θ的估计量.
考题
设总体X的概率密度为其中θ是未知参数,X1,X2,…,Xn为来自总体X的简单随机样本.若是θ的无偏估计,则c=______.
考题
设总体X服从正态分布N(μ,σ^2)(σ>0),从该总体中抽取简单随机样本X1,X2,…,Xn(n≥2),其样本均值,求统计量的数学期望E(Y).
考题
设总体X~N(μ,σ^2),X1,X2,…,xn为总体的简单样本,S^2为样本方差,则D(S^2)=_______.
考题
设总体X的概率密度为
其中参数λ(λ>0)未知,X1,X2,…,Xn是来自总体X的简单随机样本.
(Ⅰ)求参数λ的矩估计量;
(Ⅱ)求参数λ的最大似然估计量.
考题
设总体X的概率密度为
其中θ为未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.
(Ⅰ)求θ的矩估计量;
(Ⅱ)求θ的最大似然估计量.
考题
设总体X的概率密度为
其中θ为未知参数,X1,X2,…,Xn,为来自该总体的简单随机样本.
(Ⅰ)求θ的矩估计量;
(Ⅱ)求θ的最大似然估计量.
考题
设总体X的均值μ及方差σ2都存在,且有σ2>0,但μ,σ2均未知,又设X1,X2,…,Xn是来自总体x的样本,是μ,σ2的矩估计量,则有( )。
考题
设样本x1,x2,…,xn来自正态总体N(0,9),其样本方差为s2,则E(s2)=()
考题
设X1,X2,…,Xn是从总体X中抽取的容量为n的一个样本,如果由此样本构造一个函数T(X1,X2,…,Xn),不依赖于任何未知参数,则函数T(X1,X2,…,Xn)是一个()
考题
问答题设总体X~N(μ,σ2),x1,x2,…xn为其样本,为样本均值,则____.
考题
问答题总体x~N(μ,σ2),x1,x2,…,xn为其样本,未知参数μ的矩估计为_______ .