网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
矩阵A( )时可能改变其秩.《》( )

A.转置:
B.初等变换:
C.乘以奇异矩阵:
D.乘以非奇异矩阵.

参考答案

参考解析
解析:
更多 “矩阵A( )时可能改变其秩.《》( )A.转置: B.初等变换: C.乘以奇异矩阵: D.乘以非奇异矩阵.” 相关考题
考题 设6阶方阵A的秩为3,则其伴随矩阵的秩也是3。() 此题为判断题(对,错)。

考题 矩阵转置后,其行秩()。 A.不变B.变大C.变小D.无法确定

考题 已知,P为三阶非零矩阵,且满足PQ=O,则A.t=6时P的秩必为1 B.t-6时P的秩必为2 C.t≠6时P的秩必为1 D.t≠6时P的秩必为2

考题 矩阵A( )时可能改变其秩.A.转置: B.初等变换: C.乘以奇异矩阵: D.乘以非奇异矩阵.

考题 设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则

考题 则矩阵A的秩等于: A.n B.0 C.1 D.2

考题 设矩阵,已知矩阵A相似于B,则秩(A-2E)与秩(A-E)之和等于A.2 B.3 C.4 D.5

考题 下列结论中正确的是(  )。 A、 矩阵A的行秩与列秩可以不等 B、 秩为r的矩阵中,所有r阶子式均不为零 C、 若n阶方阵A的秩小于n,则该矩阵A的行列式必等于零 D、 秩为r的矩阵中,不存在等于零的r-1阶子式

考题 设矩阵,则A^3的秩为________

考题 设矩阵是4阶非零矩阵, 且满足证明矩阵B的秩

考题 设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则 A.A秩r(A)=m,秩r(B)=m B.秩r(A)=m,秩r(B)=n C.秩r(A)=n,秩r(B)=m D.秩r(A)=n,秩r(B)=n

考题 4阶方阵A的秩为2,则其伴随矩阵An的秩为( )。 A. 0 B. 1 C. 2 D. 3

考题 矩阵A在( )时秩改变.A.转置 B.初等变换 C.乘以奇异矩阵 D.乘以非奇异矩阵

考题 设A、B分别为n×m,n×l矩阵,C为以A、B为子块的n×(m+l)矩阵,即C=(A,B),则( ).《》( )A.秩(C)=秩(A) B.秩(C)=秩(B) C.秩(C)与秩(A)或秩(C)与秩(B)不一定相等 D.若秩(A)=秩(B)=r,则秩(C)=r

考题 设A为4阶魔术矩阵,分别对A进行如下操作: 求矩阵A的逆; 求矩阵A的行列式; 求矩阵A的秩; 求矩阵A的迹;

考题 线性规划标准型的系数矩阵Am×n,要求()A、秩(A)=m并且mnB、秩(A)=m并且m≤nC、秩(A)=m并且m=nD、秩(A)=n并且nm

考题 总体有n个秩次1,2……n。若n个秩中有相同秩(如1,2,4,4,4,6,7……n),其均数和方差是否会改变?

考题 问答题设A为4阶魔术矩阵,分别对A进行如下操作: 求矩阵A的逆; 求矩阵A的行列式; 求矩阵A的秩; 求矩阵A的迹;

考题 单选题设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )。A r>r1B r<r1C r=r1D r与r1的关系依C而定

考题 单选题当n阶矩阵A的秩r(A)<n时,|A|=(  )。A 0B 1C 2D 4

考题 单选题当n阶矩阵A的秩r(A)<n时,|A|=(  )。A n-1B nC 1D 0

考题 单选题当n阶矩阵A的秩r(A)<n时,|A|=(  )。A 0B 1C n-1D n

考题 单选题设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )。A r>r1B r<rlC r=rlD r与r1的关系依C而定

考题 填空题当n阶矩阵A的秩r(A)<n时,|A|=____。

考题 单选题线性规划标准型的系数矩阵Am×n,要求()A 秩(A)=m并且mnB 秩(A)=m并且m≤nC 秩(A)=m并且m=nD 秩(A)=n并且nm

考题 单选题矩阵A在(  )时秩改变。A 转置B 初等变换C 乘以奇异矩阵D 乘以非奇异矩阵

考题 单选题下列结论中正确的是( )A 矩阵A的行秩与列秩可以不等B 秩为r的矩阵中,所有r阶子式均不为零C 若n阶方阵A的秩小于n,则该矩阵A的行列式必等于零D 秩为r的矩阵中,不存在等于零的r-1阶子式

考题 填空题当n矩阵A的秩r(A)<n时,|A|=____.