网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设λ1、λ2是矩阵A的两个不同的特征值,ξ、η是A的分别属于λ1、λ2的特征向量,则以下选项正确的是( )。


参考答案

参考解析
解析:
更多 “设λ1、λ2是矩阵A的两个不同的特征值,ξ、η是A的分别属于λ1、λ2的特征向量,则以下选项正确的是( )。 ” 相关考题
考题 设λ1,λ2都是n阶矩阵A的特征值,λ1≠λ2,,且a1与a2分别是A的对应于λ1与λ2的特征向量,则(). A.c1=0且c2=0时,a=c1a1+c2a2必是A的特征向量B.c1≠0且c2≠0时,a=c1a1+c2a2必是A的特征向量C.c1,c2=0时,a1=c1a1+c2a2必是A的特征向量D.c1≠0而c2=0时,a=c1a1+c2a2必是A的特征向量

考题 设λ1,λ2是矩阵A 的2 个不同的特征值,ξ,η 是A 的分别属于λ1,λ2的特征向量, 则以下选项中正确的是: (A)对任意的k1≠ 0和k2 ≠0,k1 ξ+k2η 都是A 的特征向量 (B)存在常数k1≠ 0和k2≠0,使得k1ξ+k2η 是A 的特征向量 (C)存在任意的k1≠ 0和k2≠ 0, k1ξ+ k2η 都不是A 的特征向量 (D)仅当k1=k2=时, k1ξ+k2 η 是A 的特征向量

考题 设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,   对应特征向量为(-1,0,1)^T.   (1)求A的其他特征值与特征向量;   (2)求A.

考题 设A是三阶实对称矩阵,r(A)=1,A^2-3A=O,设(1,1,-1)t为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.

考题 设A是n阶矩阵,λ是A的特征值,其对应的特征向量为X,证明:λ^2是λ^3的特征值,X为特征向量,若A^2有特征值λ,其对应的特征向量为X,X是否一定为A的特征向量?说明理由.

考题 设2阶矩阵A有两个不同特征值,α1,α2是A的线性无关的特征向量,且满足A^2(α1+α2)=α1+α2,则|A|=________.

考题 设A为3阶矩阵,a1,a2为A的分别属于特征值-1,1的特征向量,向量a3满足

考题 设为n阶方阵A的两个互不相等的特征值,与之对应的特征向量分别为X1,X2,证明X1,X2不是矩阵A的特征向量。

考题 已知二阶实对称矩阵A的特征值是1,A的对应于特征值1的特征向量为(1,-1)T,若|A|=-1,则A的另一个特征值及其对应的特征向量是(  )。

考题 已知三维列向量a,β满足aTβ,设3阶矩阵A=βaT,则: A. β是A的属于特征值0的特征向量 B. a是A的属于特征值0的特征向量 C. β是A的属于特征值3的特征向量 D. a是A的属于特征值3的特征向量

考题 设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知a是A的属于特征值λ的特征向量,则B的属于特征值A的特征向量是: A. Pa B. P-1a C.PTa D.(P-1)Ta

考题 设λ1,λ2是矩阵A的2个不同的特征值,ξ,η是A的分别属于λ1,λ2的特征向量,则以下选项中正确的是: A. 对任意的k1≠0和k2≠0,k1ξ+k2η都是A的特征向量 B.存在常数k1≠0和k2≠0,使得k1ξ+k2η是A的特征向量 C.存在任意的k1≠0和k2≠0,k1ξ+k2η都不是A的特征向量 D.仅当k1=0和k2=0,k1ξ+k2η是A的特征向量

考题 设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知a是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是: A. Pa B. P-1A C. PTa D.(P-1)Ta

考题 已知三维列向量αβ满足αTβ=3,设3阶矩阵A=βαT,则: A. β是A的属于特征值0的特征向量 B. α是A的属于特征值0的特征向量 C. β是A的属于特征值3的特征向量 D. α是A的属于特征值3的特征向量

考题 设A是三阶矩阵,a1(1,0,1)T,a2(1,1,0)T是A的属于特征值1的特征向量,a3(0,1,2)T是A的属于特征值-1的特征向量,则: A.a1-a2是A的属于特征值1的特征向量 B.a1-a3是A的属于特征值1的特征向量 C.a1-a3是A的属于特征值2的特征向量 D. a1+a2+a3是A的属于特征值1的特征向量

考题 A.β是A的属于特征值0的特征向量 B.α是A的属于特征值0的特征向量 C.β是A的属于特征值2的特征向量 D.α是A的属于特征值2的特征向量

考题 设三阶矩阵A的特征值为λ1=1,λ2=0,λ3=1,则下列结论不正确的是().A.矩阵A不可逆 B.矩阵A的迹为零 C.特征值-1,1对应的特征向量正交 D.方程组AX=0的基础解系含有一个线性无关的解向量

考题 设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是(  )。 A、λ1=0 B、λ2=0 C、λ1≠0 D、λ2≠0

考题 设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为a1,a2,则a1,A(a1+a2)线性无关的充分必要条件是( )。 A.λ1=0 B.λ2=0 C.λ1≠0 D.λ2≠0

考题 设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是( )。 A. α是矩阵-2A的属于特征值-2λ的特征向量 D. α是矩阵AT的属于特征值λ的特征向量

考题 设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。A、α是矩阵-2A的属于特征值-2λ的特征向量B、α是矩阵的属于特征值的特征向量C、α是矩阵A*的属于特征值的特征向量D、α是矩阵AT的属于特征值λ的特征向量

考题 已知λ=2是三阶矩阵A的一个特征值,α1,α2是A的属于λ=2的特征向量。若α1=(1,2,0)T,α2=(1,0,1)T,向量β=(-1,2,-2)T,则Aβ等于()。A、(2,2,1)TB、(-1,2,_2)TC、(-2,4,-4)TD、(-2,-4,4)

考题 设λ1,λ2是矩阵A的两个不同的特征值,ξ、η是a的分别属于λ1、λ2的特征向量,则以下选项正确的是()。A、对任意的k1≠0和k2≠0,k1ξ+k2η都是A的特征向量B、存在常数k1≠0和k2≠0,使得k1ξ+k2η是A的特征向量C、对任意的k1≠0和k2≠0,k1ξ+k2η都不是A的特征向量D、仅当k1=k2=0时,k1ξ+k2η是A的特征向量

考题 单选题设λ1,λ2是矩阵A的两个不同的特征值,ξ,η是A的分别属于λ1,λ2的特征向量,则以下选项中正确的是(  )。A 对任意的k1≠0和k2≠0,k1ξ+k2η都是A的特征向量B 存在常数k1≠0和 k2≠0,使得k1ξ+k2η是A的特征向量C 对任意的k1≠0和k2≠0,k1ξ+k2η都不是A的特征向量D 仅当k1=k2=0时,k1ξ+k2η是A的特征向量

考题 单选题设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。A α是矩阵-2A的属于特征值-2λ的特征向量B α是矩阵的属于特征值的特征向量C α是矩阵A*的属于特征值的特征向量D α是矩阵AT的属于特征值λ的特征向量

考题 问答题证明:  (1)若α(→)1,α(→)2,…,α(→)r是A的属于特征值λ的特征向量,则α(→)1,α(→)2,…,α(→)r的任一个非零线性组合也是A的属于λ的特征向量。  (2)矩阵可逆的充分必要条件是它的特征值都不为0。

考题 单选题(2009)设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:()A PαB P-1αC PTαD (P-1)Tα