网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
设λ1、λ2是矩阵A的两个不同的特征值,ξ、η是A的分别属于λ1、λ2的特征向量,则以下选项正确的是( )。
参考答案
参考解析
解析:
更多 “设λ1、λ2是矩阵A的两个不同的特征值,ξ、η是A的分别属于λ1、λ2的特征向量,则以下选项正确的是( )。 ” 相关考题
考题
设λ1,λ2都是n阶矩阵A的特征值,λ1≠λ2,,且a1与a2分别是A的对应于λ1与λ2的特征向量,则().
A.c1=0且c2=0时,a=c1a1+c2a2必是A的特征向量B.c1≠0且c2≠0时,a=c1a1+c2a2必是A的特征向量C.c1,c2=0时,a1=c1a1+c2a2必是A的特征向量D.c1≠0而c2=0时,a=c1a1+c2a2必是A的特征向量
考题
设λ1,λ2是矩阵A 的2 个不同的特征值,ξ,η 是A 的分别属于λ1,λ2的特征向量,
则以下选项中正确的是:
(A)对任意的k1≠ 0和k2 ≠0,k1 ξ+k2η 都是A 的特征向量
(B)存在常数k1≠ 0和k2≠0,使得k1ξ+k2η 是A 的特征向量
(C)存在任意的k1≠ 0和k2≠ 0, k1ξ+ k2η 都不是A 的特征向量
(D)仅当k1=k2=时, k1ξ+k2 η 是A 的特征向量
考题
已知三维列向量a,β满足aTβ,设3阶矩阵A=βaT,则:
A. β是A的属于特征值0的特征向量
B. a是A的属于特征值0的特征向量
C. β是A的属于特征值3的特征向量
D. a是A的属于特征值3的特征向量
考题
设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知a是A的属于特征值λ的特征向量,则B的属于特征值A的特征向量是:
A. Pa
B. P-1a
C.PTa
D.(P-1)Ta
考题
设λ1,λ2是矩阵A的2个不同的特征值,ξ,η是A的分别属于λ1,λ2的特征向量,则以下选项中正确的是:
A. 对任意的k1≠0和k2≠0,k1ξ+k2η都是A的特征向量
B.存在常数k1≠0和k2≠0,使得k1ξ+k2η是A的特征向量
C.存在任意的k1≠0和k2≠0,k1ξ+k2η都不是A的特征向量
D.仅当k1=0和k2=0,k1ξ+k2η是A的特征向量
考题
设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知a是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:
A. Pa B. P-1A C. PTa D.(P-1)Ta
考题
已知三维列向量αβ满足αTβ=3,设3阶矩阵A=βαT,则:
A. β是A的属于特征值0的特征向量
B. α是A的属于特征值0的特征向量
C. β是A的属于特征值3的特征向量
D. α是A的属于特征值3的特征向量
考题
设A是三阶矩阵,a1(1,0,1)T,a2(1,1,0)T是A的属于特征值1的特征向量,a3(0,1,2)T是A的属于特征值-1的特征向量,则:
A.a1-a2是A的属于特征值1的特征向量
B.a1-a3是A的属于特征值1的特征向量
C.a1-a3是A的属于特征值2的特征向量
D. a1+a2+a3是A的属于特征值1的特征向量
考题
设三阶矩阵A的特征值为λ1=1,λ2=0,λ3=1,则下列结论不正确的是().A.矩阵A不可逆
B.矩阵A的迹为零
C.特征值-1,1对应的特征向量正交
D.方程组AX=0的基础解系含有一个线性无关的解向量
考题
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是( )。
A、λ1=0
B、λ2=0
C、λ1≠0
D、λ2≠0
考题
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为a1,a2,则a1,A(a1+a2)线性无关的充分必要条件是( )。
A.λ1=0
B.λ2=0
C.λ1≠0
D.λ2≠0
考题
设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。A、α是矩阵-2A的属于特征值-2λ的特征向量B、α是矩阵的属于特征值的特征向量C、α是矩阵A*的属于特征值的特征向量D、α是矩阵AT的属于特征值λ的特征向量
考题
已知λ=2是三阶矩阵A的一个特征值,α1,α2是A的属于λ=2的特征向量。若α1=(1,2,0)T,α2=(1,0,1)T,向量β=(-1,2,-2)T,则Aβ等于()。A、(2,2,1)TB、(-1,2,_2)TC、(-2,4,-4)TD、(-2,-4,4)
考题
设λ1,λ2是矩阵A的两个不同的特征值,ξ、η是a的分别属于λ1、λ2的特征向量,则以下选项正确的是()。A、对任意的k1≠0和k2≠0,k1ξ+k2η都是A的特征向量B、存在常数k1≠0和k2≠0,使得k1ξ+k2η是A的特征向量C、对任意的k1≠0和k2≠0,k1ξ+k2η都不是A的特征向量D、仅当k1=k2=0时,k1ξ+k2η是A的特征向量
考题
单选题设λ1,λ2是矩阵A的两个不同的特征值,ξ,η是A的分别属于λ1,λ2的特征向量,则以下选项中正确的是( )。A
对任意的k1≠0和k2≠0,k1ξ+k2η都是A的特征向量B
存在常数k1≠0和 k2≠0,使得k1ξ+k2η是A的特征向量C
对任意的k1≠0和k2≠0,k1ξ+k2η都不是A的特征向量D
仅当k1=k2=0时,k1ξ+k2η是A的特征向量
考题
单选题设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。A
α是矩阵-2A的属于特征值-2λ的特征向量B
α是矩阵的属于特征值的特征向量C
α是矩阵A*的属于特征值的特征向量D
α是矩阵AT的属于特征值λ的特征向量
考题
问答题证明: (1)若α(→)1,α(→)2,…,α(→)r是A的属于特征值λ的特征向量,则α(→)1,α(→)2,…,α(→)r的任一个非零线性组合也是A的属于λ的特征向量。 (2)矩阵可逆的充分必要条件是它的特征值都不为0。
考题
单选题(2009)设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:()A
PαB
P-1αC
PTαD
(P-1)Tα
热门标签
最新试卷