网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是( )。
A、λ1=0
B、λ2=0
C、λ1≠0
D、λ2≠0
B、λ2=0
C、λ1≠0
D、λ2≠0
参考答案
参考解析
解析:
更多 “设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是( )。 A、λ1=0 B、λ2=0 C、λ1≠0 D、λ2≠0 ” 相关考题
考题
设λ1,λ2都是n阶矩阵A的特征值,λ1≠λ2,,且a1与a2分别是A的对应于λ1与λ2的特征向量,则().
A.c1=0且c2=0时,a=c1a1+c2a2必是A的特征向量B.c1≠0且c2≠0时,a=c1a1+c2a2必是A的特征向量C.c1,c2=0时,a1=c1a1+c2a2必是A的特征向量D.c1≠0而c2=0时,a=c1a1+c2a2必是A的特征向量
考题
n*n矩阵可看作是n维空间中的线性变换,矩阵的特征向量经过线性变换后,只是乘以某个常数(特征值),因此,特征向量和特征值在应用中具有重要的作用。下面的矩阵(其中w1、w2、w3均为正整数)有特征向量(w1,w2,w3),其对应的特征值为( )。A.1/3B.1C.3D.9
考题
设三阶矩阵A的特征值为λ1=1,λ2=0,λ3=1,则下列结论不正确的是().A.矩阵A不可逆
B.矩阵A的迹为零
C.特征值-1,1对应的特征向量正交
D.方程组AX=0的基础解系含有一个线性无关的解向量
考题
设A是三阶矩阵,a1(1,0,1)T,a2(1,1,0)T是A的属于特征值1的特征向量,a3(0,1,2)T是A的属于特征值-1的特征向量,则:
A.a1-a2是A的属于特征值1的特征向量
B.a1-a3是A的属于特征值1的特征向量
C.a1-a3是A的属于特征值2的特征向量
D. a1+a2+a3是A的属于特征值1的特征向量
考题
设α1,α2,α3均为三维向量,则对任意常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的 A.A必要非充分条件
B.充分非必要条件
C.充分必要条件
D.既非充分也非必要条件
考题
设|A|=0,α1、α2、是线性方程组Aχ=0的一个基础解系,Aα3=α3≠0,则下列向量中不是矩阵A的特征向量的是( )。A、3α1+α2
B、α1-3α2
C、αl+3α3
D、3α3
考题
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为a1,a2,则a1,A(a1+a2)线性无关的充分必要条件是( )。
A.λ1=0
B.λ2=0
C.λ1≠0
D.λ2≠0
考题
设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。A、α是矩阵-2A的属于特征值-2λ的特征向量B、α是矩阵的属于特征值的特征向量C、α是矩阵A*的属于特征值的特征向量D、α是矩阵AT的属于特征值λ的特征向量
考题
设λ1,λ2是矩阵A的两个不同的特征值,ξ、η是a的分别属于λ1、λ2的特征向量,则以下选项正确的是()。A、对任意的k1≠0和k2≠0,k1ξ+k2η都是A的特征向量B、存在常数k1≠0和k2≠0,使得k1ξ+k2η是A的特征向量C、对任意的k1≠0和k2≠0,k1ξ+k2η都不是A的特征向量D、仅当k1=k2=0时,k1ξ+k2η是A的特征向量
考题
单选题设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是( ).A
向量组α1,α2,…,αm可以由β1,β2,…,βm线性表示B
向量组β1,β2,…,βm可以由α1,α2,…,αm线性表示C
向量组α1,…,αm与向量组β1,…,βm等价D
矩阵A=(α1,…,αm)与矩阵B=(β1,…,βm)β)m
考题
单选题设A是三阶矩阵,α1=(1,0,1)T,α2=(1,1,0)T是A的属于特征值1的特征向量,α3=(0,1,2)T是A的属于特征值-1的特征向量,则:()A
α1-α2是A的属于特征值1的特征向量B
α1-α3是A的属于特征值1的特征向量C
α1-α3是A的属于特征值2的特征向量D
α1+α2+α3是A的属于特征值1的特征向量
考题
单选题设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。A
α是矩阵-2A的属于特征值-2λ的特征向量B
α是矩阵的属于特征值的特征向量C
α是矩阵A*的属于特征值的特征向量D
α是矩阵AT的属于特征值λ的特征向量
考题
问答题设某客观现象可用X=(x1,x2,x3)′来描述,在因子分析时,从约相关阵出发计算出特征值为λ1=1.754,λ2=1,λ3=0.255,由于(λ1+λ2)/(λ1+λ2+λ3)≥85%,所以找前两个特征值所对应的公共因子即可,又知λ1,λ2对应的正则化特征向量分别为(0.707,-0.316,0.632)’及(0,0.899,0.4470)’,要求:计算第一公因子对X 的“贡献”。
考题
问答题证明: (1)若α(→)1,α(→)2,…,α(→)r是A的属于特征值λ的特征向量,则α(→)1,α(→)2,…,α(→)r的任一个非零线性组合也是A的属于λ的特征向量。 (2)矩阵可逆的充分必要条件是它的特征值都不为0。
考题
单选题设向量组α(→)1,α(→)2,α(→)3线性无关,向量β(→)1可由α(→)1,α(→)2,α(→)3线性表示,而向量β(→)2不能由α(→)1,α(→)2,α(→)3线性表示,则对任意常数,必有( )。A
α(→)1,α(→)2,α(→)3,kβ(→)1+β(→)2线性无关B
α(→)1,α(→)2,α(→)3,kβ(→)1+β(→)2线性相关C
α(→)1,α(→)2,α(→)3,β(→)1+kβ(→)2线性无关D
α(→)1,α(→)2,α(→)3,β(→)1+kβ(→)2线性相关
考题
单选题设n维列向量组α(→)1,α(→)2,…,α(→)m(m<n)线性无关,则n维列向量组β(→)1,β(→)2,…,β(→)m线性无关的充分必要条件是( )。A
向量组α(→)1,α(→)2,…,α(→)m可以由β(→)1,β(→)2,…,β(→)m线性表示B
向量组β(→)1,β(→)2,…,β(→)m可以由α(→)1,α(→)2,…,α(→)m线性表示C
向量组α(→)1,α(→)2,…,α(→)m与向量组β(→)1,β(→)2,…,β(→)m等价D
矩阵A=(α(→)1,α(→)2,…,α(→)m)与矩阵B=(β(→)1,β(→)2,…,β(→)m)等价
考题
单选题设α(→)1,α(→)2,…,α(→)s均为n维列向量,A是m×n矩阵,下列选项正确的是( )。A
若α(→)1,α(→)2,…,α(→)s线性相关,则Aα(→)1,Aα(→)2,…,Aα(→)s线性相关B
若α(→)1,α(→)2,…,α(→)s线性相关,则Aα(→)1,Aα(→)2,…,Aα(→)s线性无关C
若α(→)1,α(→)2,…,α(→)s线性无关,则Aα(→)1,Aα(→)2,…,Aα(→)s线性相关D
若α(→)1,α(→)2,…,α(→)s线性无关,则Aα(→)1,Aα(→)2,…,Aα(→)s线性无关
考题
单选题设α(→)1,α(→)2,α(→)3线性无关,则与α(→)1,α(→)2,α(→)3等价的是( )。A
α(→)1+α(→)2,α(→)2+α(→)3B
α(→)1+α(→)2,α(→)1-α(→)2,3α(→)1,4α(→)2C
α(→)1+α(→)2,α(→)1-α(→)2,α(→)1+α(→)3,α(→)1-α(→)3D
α(→)1+α(→)2,α(→)2-α(→)3
考题
问答题设有三个非零的n阶(n≥3)方阵A1、A2、A3,满足Ai2=Ai(i=1,2,3),且AiAj=0(i≠j,i、j=1,2,3),证明: (1)Ai(i=1,2,3)的特征值有且仅有0和1; (2)Ai的对应于特征值1的特征向量是Aj的对应于特征值0的特征向量(i≠j); (3)若α(→)1、α(→)2、α(→)3分别为A1、A2、A3的对应于特征值1的特征向量,则向量组α(→)1、α(→)2、α(→)3线性无关。
热门标签
最新试卷