网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
设A是n阶矩阵,λ是A的特征值,其对应的特征向量为X,证明:λ^2是λ^3的特征值,X为特征向量,若A^2有特征值λ,其对应的特征向量为X,X是否一定为A的特征向量?说明理由.
参考答案
参考解析
解析:
更多 “设A是n阶矩阵,λ是A的特征值,其对应的特征向量为X,证明:λ^2是λ^3的特征值,X为特征向量,若A^2有特征值λ,其对应的特征向量为X,X是否一定为A的特征向量?说明理由.” 相关考题
考题
设A为n阶实对称矩阵,则().
A.A的n个特征向量两两正交B.A的n个特征向量组成单位正交向量组C.A的k重特征值λ0,有r(λ0E-A)=n-kD.A的k重特征值λ。,有r(λ0E-A)=k
考题
n*n矩阵可看作是n维空间中的线性变换,矩阵的特征向量经过线性变换后,只是乘以某个常数(特征值),因此,特征向量和特征值在应用中具有重要的作用。下面的矩阵(其中w1、w2、w3均为正整数)有特征向量(w1,w2,w3),其对应的特征值为( )。A.1/3B.1C.3D.9
考题
已知三维列向量a,β满足aTβ,设3阶矩阵A=βaT,则:
A. β是A的属于特征值0的特征向量
B. a是A的属于特征值0的特征向量
C. β是A的属于特征值3的特征向量
D. a是A的属于特征值3的特征向量
考题
设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知a是A的属于特征值λ的特征向量,则B的属于特征值A的特征向量是:
A. Pa
B. P-1a
C.PTa
D.(P-1)Ta
考题
已知三维列向量αβ满足αTβ=3,设3阶矩阵A=βαT,则:
A. β是A的属于特征值0的特征向量
B. α是A的属于特征值0的特征向量
C. β是A的属于特征值3的特征向量
D. α是A的属于特征值3的特征向量
考题
设A是三阶矩阵,a1(1,0,1)T,a2(1,1,0)T是A的属于特征值1的特征向量,a3(0,1,2)T是A的属于特征值-1的特征向量,则:
A.a1-a2是A的属于特征值1的特征向量
B.a1-a3是A的属于特征值1的特征向量
C.a1-a3是A的属于特征值2的特征向量
D. a1+a2+a3是A的属于特征值1的特征向量
考题
已知3维列向量α,β满足αTβ=3,设3阶矩阵A=βαT,则( )。
A.β是A的属于特征值0的特征向量 B. α是A的属于特征值0的特征向量
C.β是A的属于特征值3的特征向量 D. α是A的属于特征值3的特征向量
考题
设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。A、α是矩阵-2A的属于特征值-2λ的特征向量B、α是矩阵的属于特征值的特征向量C、α是矩阵A*的属于特征值的特征向量D、α是矩阵AT的属于特征值λ的特征向量
考题
已知3维列向量α,β满足αTβ=3,设3阶矩阵A=βαT,则()。A、β是A的属于特征值0的特征向量B、α是A的属于特征值0的特征向量C、β是A的属于特征值3的特征向量D、α是A的属于特征值3的特征向量
考题
单选题设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。A
α是矩阵-2A的属于特征值-2λ的特征向量B
α是矩阵的属于特征值的特征向量C
α是矩阵A*的属于特征值的特征向量D
α是矩阵AT的属于特征值λ的特征向量
考题
问答题设有三个非零的n阶(n≥3)方阵A1、A2、A3,满足Ai2=Ai(i=1,2,3),且AiAj=0(i≠j,i、j=1,2,3),证明: (1)Ai(i=1,2,3)的特征值有且仅有0和1; (2)Ai的对应于特征值1的特征向量是Aj的对应于特征值0的特征向量(i≠j); (3)若α(→)1、α(→)2、α(→)3分别为A1、A2、A3的对应于特征值1的特征向量,则向量组α(→)1、α(→)2、α(→)3线性无关。
考题
单选题(2009)设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:()A
PαB
P-1αC
PTαD
(P-1)Tα
热门标签
最新试卷