网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
判断题
齐次坐标表示法用n维向量表示一个n+1维向量。
A
对
B
错
参考答案
参考解析
解析:
暂无解析
更多 “判断题齐次坐标表示法用n维向量表示一个n+1维向量。A 对B 错” 相关考题
考题
设α,β,γ,δ 是n 维向量,已知α,β 线性无关,γ 可以由α,β 线性表示,δ 不能由α,β 线性表示,则以下选项中正确的是:
(A)α,β,γ,δ 线性无关 (B)α,β,γ 线性无关
(C)α,β,δ 线性相关 (D)α,β,δ 线性无关
考题
单选题设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是( ).A
向量组α1,α2,…,αm可以由β1,β2,…,βm线性表示B
向量组β1,β2,…,βm可以由α1,α2,…,αm线性表示C
向量组α1,…,αm与向量组β1,…,βm等价D
矩阵A=(α1,…,αm)与矩阵B=(β1,…,βm)β)m
考题
单选题n维向量组α(→)1,α(→)2,…,α(→)s线性无关的充分条件是( )。A
α(→)1,α(→)2,…,α(→)s中没有零向量B
向量组的个数不大于维数,即s≤nC
α(→)1,α(→)2,…,α(→)s中任意两个向量的分量不成比例D
某向量β(→)可由α(→)1,α(→)2,…,α(→)s线性表示,且表示法唯一
考题
单选题下列说法不正确的是( )。A
s个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则加入k个n维向量β(→)1,β(→)2,…,β(→)k后的向量组仍然线性无关B
s个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则每个向量增加k维分量后得到的向量组仍然线性无关C
s个n维向量α(→)1,α(→)2,…,α(→)s线性相关,则加入k个n维向量β(→)1,β(→)2,…,β(→)k后得到的向量组仍然线性相关D
s个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则减少一个向量后得到的向量组仍然线性无关
考题
单选题n维向量组,α(→)1,α(→)2,…,α(→)s(3≤s≤n)线性无关的充要条件是( )。A
存在一组不全为0的数k1,k2,…,ks,使kα(→)1+k2α(→)2+…+ksα(→)s≠0(→)B
α(→)1,α(→)2,…,α(→)s中任意两个向量都线性无关C
α(→)1,α(→)2,…,α(→)s中存在一个向量不能由其余向量线性表示D
α(→)1,α(→)2,…,α(→)s中任何一个向量都不能由其余向量线性表示
考题
单选题设α(→)1,α(→)2,…,α(→)s和β(→)1,β(→)2,…,β(→)t为两个n维向量组,且秩(α(→)1,α(→)2,…,α(→)s)=秩(β(→)1,β(→)2,…,β(→)t)=r,则( )。A
此两个向量组等价B
秩(α(→)1,α(→)2,…,α(→)s,β(→)1,β(→)2,…,β(→)t)=rC
当α(→)1,α(→)2,…,α(→)s可以由β(→)1,β(→)2,…,β(→)t线性表示时,此二向量组等价D
s=t时,二向量组等价
考题
单选题设n维列向量组α(→)1,α(→)2,…,α(→)m(m<n)线性无关,则n维列向量组β(→)1,β(→)2,…,β(→)m线性无关的充分必要条件是( )。A
向量组α(→)1,α(→)2,…,α(→)m可以由β(→)1,β(→)2,…,β(→)m线性表示B
向量组β(→)1,β(→)2,…,β(→)m可以由α(→)1,α(→)2,…,α(→)m线性表示C
向量组α(→)1,α(→)2,…,α(→)m与向量组β(→)1,β(→)2,…,β(→)m等价D
矩阵A=(α(→)1,α(→)2,…,α(→)m)与矩阵B=(β(→)1,β(→)2,…,β(→)m)等价
考题
单选题在MATLAB中,n次多项式用一个长度为()的行向量表示。A
n-1B
nC
n+1D
n+2
热门标签
最新试卷