网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
单选题
设α(→)1,α(→)2,…,α(→)s和β(→)1,β(→)2,…,β(→)t为两个n维向量组,且秩(α(→)1,α(→)2,…,α(→)s)=秩(β(→)1,β(→)2,…,β(→)t)=r,则(  )。
A

此两个向量组等价

B

秩(α()1α()2,…,α()sβ()1β()2,…,β()t)=r

C

α()1α()2,…,α()s可以由β()1β()2,…,β()t线性表示时,此二向量组等价

D

s=t时,二向量组等价


参考答案

参考解析
解析:
两向量组等价的充要条件是所含向量的个数相等,且能相互线性表示。
更多 “单选题设α(→)1,α(→)2,…,α(→)s和β(→)1,β(→)2,…,β(→)t为两个n维向量组,且秩(α(→)1,α(→)2,…,α(→)s)=秩(β(→)1,β(→)2,…,β(→)t)=r,则(  )。A 此两个向量组等价B 秩(α(→)1,α(→)2,…,α(→)s,β(→)1,β(→)2,…,β(→)t)=rC 当α(→)1,α(→)2,…,α(→)s可以由β(→)1,β(→)2,…,β(→)t线性表示时,此二向量组等价D s=t时,二向量组等价” 相关考题
考题 样本含量分别为n1和n2(n2n1)的两组定量资料比较,用秩和检验时,则A.秩次范围为l,2,…,nl S 样本含量分别为n1和n2(n2n1)的两组定量资料比较,用秩和检验时,则A.秩次范围为l,2,…,nlB.秩次范围为l,2,…,n2C.秩次范围为l,2,…,n1+n2D.秩次范围为l,2,…,n2一n1E.无限个秩次l,2,…

考题 设α1,α2,…,αn为n个线性无关的n维列向量,且与向量β正交.证明:向量β为零向量.

考题 设矩阵,α1,α2,α3为线性无关的3维列向量组,则向量组Aα1,Aα2,Aα3的秩为_________.

考题 样本含量分别为n1和n2(n2>n1)的两组定量资料比较,用秩和检验时,则( )A.秩次范围为1,2,…,n1 B.秩次范围为1,2,…,n2 C.秩次范围为1,2,…,n1+n2 D.秩次范围为1,2,…,n1-n2 E.无限个秩次1,2,…

考题 设向量组A:α1=(t,1,1),α2=(1,t,1),α3=(1,1,t)的秩为2,则t等于().A、1B、-2C、1或-2D、任意数

考题 设有向量组α1=(2,1,4,3)T,α1=(-1,1,-6,6)T,α3=(-1,-2,2,-9)T,α4=(1,1,-2,7)T,α5=(2,4,4,9)T,则向量组α1,α2,α3,α4,α5的秩是()。A、1B、2C、3D、4

考题 单选题设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是(  ).A 向量组α1,α2,…,αm可以由β1,β2,…,βm线性表示B 向量组β1,β2,…,βm可以由α1,α2,…,αm线性表示C 向量组α1,…,αm与向量组β1,…,βm等价D 矩阵A=(α1,…,αm)与矩阵B=(β1,…,βm)β)m

考题 单选题设n维行向量α=(1/2,0,…,0,1/2),矩阵A=E-αTα,B=E+2αTα,其中E为n阶单位矩阵,则AB等于(  )。A OB -EC ED E+αTα

考题 单选题n维向量组α(→)1,α(→)2,…,α(→)s线性无关的充分条件是(  )。A α(→)1,α(→)2,…,α(→)s中没有零向量B 向量组的个数不大于维数,即s≤nC α(→)1,α(→)2,…,α(→)s中任意两个向量的分量不成比例D 某向量β(→)可由α(→)1,α(→)2,…,α(→)s线性表示,且表示法唯一

考题 单选题设向量组Ⅰ:α(→)1,α(→)2,…,α(→)m,其秩为r;向量组Ⅱ:α(→)1,α(→)2,…, α(→)m,β(→),其秩为s,则r=s是向量组Ⅰ与向量组Ⅱ等价的(  )。A 充分非必要条件B 必要非充分条件C 充分必要条件D 既非充分也非必要条件

考题 单选题设n维向量组(Ⅰ)α1,α2,…,αs线性无关,(Ⅱ)β1,β2,…,βt线性无关,且αi不能由(Ⅱ)线性表示(i=1,2,…,s),βj且不能由(I)线性表示(j=1,2,…,t),则向量组α1,α2,…,αs,β1,β2,…,βt(  ).A 一定线性相关B 一定线性无关C 可能线性相关,也可能线性无关D 既不线性相关,也不线性无关

考题 问答题设向量组(Ⅰ)α(→)1,α(→)2,…,α(→)s;(Ⅱ)β(→)1,β(→)2,…,β(→)t;(Ⅲ)α(→)1,α(→)2,…,α(→)s,β(→)1,β(→)2,…,β(→)t的秩依次为r1,r2,r3。证明:max(r1,r2)≤r3≤r1+r2。

考题 单选题设向量组A:α1=(t,1,1),α2=(1,t,1),α3=(1,1,t)的秩为2,则t等于().A 1B -2C 1或-2D 任意数

考题 单选题设向量组α(→)1,α(→)2,…,α(→)s的秩为r,则(  )。A 必定r<sB 向量组中任意个数小于r的部分组线性无关C 向量组中任意r个向量线性无关D 若s>r,则向量组中任意r+l个向量必线性相关

考题 问答题设向量组(Ⅰ)α1,α2,…,αs.(Ⅱ)β1,β2,…,βt.(Ⅲ)α1,α2,…,αs,β1,β2,…,βt.的秩依次为r1,r2,r3.证明:max(r1,r2)≤r3≤r1+r2.

考题 单选题设向量组I:α(→)1,α(→)2,…,α(→)m,其秩为r;向量组II:α(→)1,α(→)2,…,α(→)m,β(→),其秩为s,则r=s是向量组I与向量组II等价的(  )。A 充分非必要条件B 必要非充分条件C 充分必要条件D 既非充分也非必要条件

考题 单选题设n阶方阵A=(α(→)1,α(→)2,…,α(→)n),B=(β(→)1,β(→)2,…,β(→)n),AB=(γ(→)1,γ(→)2,…,γ(→)n),记向量组(Ⅰ):α(→)1,α(→)2,…,α(→)n;(Ⅱ): β(→)1,β(→)2,…,β(→)n;(Ⅲ):γ(→)1,γ(→)2,…,γ(→)n。如果向量组(Ⅲ)线性相关,则(  )。A 向量组(Ⅰ)与(Ⅱ)都线性相关B 向量组(Ⅰ)线性相关C 向量组(Ⅱ)线性相关D 向量组(Ⅰ)与(Ⅱ)中至少有一个线性相关

考题 单选题下列说法不正确的是(  )。A s个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则加入k个n维向量β(→)1,β(→)2,…,β(→)k后的向量组仍然线性无关B s个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则每个向量增加k维分量后得到的向量组仍然线性无关C s个n维向量α(→)1,α(→)2,…,α(→)s线性相关,则加入k个n维向量β(→)1,β(→)2,…,β(→)k后得到的向量组仍然线性相关D s个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则减少一个向量后得到的向量组仍然线性无关

考题 问答题设向量组α(→)1,α(→)2,…,α(→)s的秩为r>0,证明:  (1)α(→)1,α(→)2,…,α(→)s中任意r个线性无关的向量都构成它的一个极大线性无关组;  (2)若α(→)1,α(→)2,…,α(→)s中每个向量都可由其中某r个向量线性表示,则这r个向量必为α(→)1,α(→)2,…,α(→)s的一个极大线性无关组。

考题 单选题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=(  )。A 4B 2C -1D 1

考题 单选题n维向量组,α(→)1,α(→)2,…,α(→)s(3≤s≤n)线性无关的充要条件是(  )。A 存在一组不全为0的数k1,k2,…,ks,使kα(→)1+k2α(→)2+…+ksα(→)s≠0(→)B α(→)1,α(→)2,…,α(→)s中任意两个向量都线性无关C α(→)1,α(→)2,…,α(→)s中存在一个向量不能由其余向量线性表示D α(→)1,α(→)2,…,α(→)s中任何一个向量都不能由其余向量线性表示

考题 单选题设向量组(I)α1,α2,…,αs,其秩为r1,向量组(Ⅱ)β1,β2,…,βs,其秩为r2,且βi(i=1,2,…,s)均可以由α1,…,αs线性表示,则(  ).A 向量组α1+β1,α2+β2,…,αs+βs的秩为r1+r2B 向量组α1-β1,α2-β2,…,αs-βs秩为rl-r2C 向量组α1,α2,…,αs,β1,β2,…,βs的秩为rl+r2D 向量组α1,α2,…,αs,β1,β2,…,βs的秩为rl

考题 单选题设n维向量组(Ⅰ)α(→)1,α(→)2,…,α(→)s线性无关,(Ⅱ)β(→)1,β(→)2,…,β(→)t线性无关,且α(→)i不能由(Ⅱ)线性表示(i=1,2,…,s),且β(→)j不能由(Ⅰ)线性表示(j=1,2,…,t),则向量组α(→)1,α(→)2,…,α(→)s,β(→)1,β(→)2,…,β(→)t(  )。A 一定线性相关B 一定线性无关C 可能线性相关,也可能线性无关D 既不线性相关,也不线性无关

考题 单选题设n维列向量组α(→)1,α(→)2,…,α(→)m(m<n)线性无关,则n维列向量组β(→)1,β(→)2,…,β(→)m线性无关的充分必要条件是(  )。A 向量组α(→)1,α(→)2,…,α(→)m可以由β(→)1,β(→)2,…,β(→)m线性表示B 向量组β(→)1,β(→)2,…,β(→)m可以由α(→)1,α(→)2,…,α(→)m线性表示C 向量组α(→)1,α(→)2,…,α(→)m与向量组β(→)1,β(→)2,…,β(→)m等价D 矩阵A=(α(→)1,α(→)2,…,α(→)m)与矩阵B=(β(→)1,β(→)2,…,β(→)m)等价

考题 单选题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=(  )。A -1B 1C -2D 2