网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
单选题
下面关于Jarvis-Patrick(JP)聚类算法的说法不正确的是()。
A
JP聚类擅长处理噪声和离群点,并且能够处理不同大小、形状和密度的簇
B
JP算法对高维数据效果良好,尤其擅长发现强相关对象的紧致簇
C
JP聚类是基于SNN相似度的概念
D
JP聚类的基本时间复杂度为O(m)
参考答案
参考解析
解析:
暂无解析
更多 “单选题下面关于Jarvis-Patrick(JP)聚类算法的说法不正确的是()。A JP聚类擅长处理噪声和离群点,并且能够处理不同大小、形状和密度的簇B JP算法对高维数据效果良好,尤其擅长发现强相关对象的紧致簇C JP聚类是基于SNN相似度的概念D JP聚类的基本时间复杂度为O(m)” 相关考题
考题
数据挖掘方法中的聚类分析也被称为无制导学习。一个好的聚类分析算法应该使得所得到的______。A.聚簇问的相似性很高,而不同的聚簇内的相似性很低B.聚簇内的相似性很低,而不同的聚簇间的相似性很高C.聚簇间的相似性很低,而不同的聚簇内的相似性很低D.聚簇内的相似性很高,而不同的聚簇间的相似性很低A.B.C.D.
考题
关于聚类算法K-Means和DBSCAN的叙述中,不正确的是( )。A.K-Means和DBSCAN的聚类结果与输入参数有很大的关系
B.K-Means基于距离的概念而DBSCAN基于密度的概念进行聚类分析
C.K-Means很难处理非球形的簇和不同大小的簇,DBSCAN可以处理不同大小和不同形状的簇
D.当簇的密度变化较大时,DBSCAN不能很好的处理,而K-Means则可以
考题
下面关于Jarvis-Patrick(JP)聚类算法的说法不正确的是()。A、JP聚类擅长处理噪声和离群点,并且能够处理不同大小、形状和密度的簇B、JP算法对高维数据效果良好,尤其擅长发现强相关对象的紧致簇C、JP聚类是基于SNN相似度的概念D、JP聚类的基本时间复杂度为O(m)
考题
关于K均值和DBSCAN的比较,以下说法不正确的是()。A、K均值丢弃被它识别为噪声的对象,而DBSCAN一般聚类所有对象B、K均值使用簇的基于原型的概念,而DBSCAN使用基于密度的概念C、K均值很难处理非球形的簇和不同大小的簇,DBSCAN可以处理不同大小和不同形状的簇D、K均值可以发现不是明显分离的簇,即便簇有重叠也可以发现,但是DBSCAN会合并有重叠的簇
考题
SYS板与PMC板硬件一致,两者都插在PMC框中,但SYS板的板内跳线与PMC板不同,特别是JP1-JP6跳线在更换单板时要注意。其中位于板位9的SYS板正确的跳线是(),其余断开。A、JP3、JP4短接B、JP2、JP4短接C、JP1、JP6短接D、JP3、JP6短接
考题
以下是哪一个聚类算法的算法流程() ①构造k-最近邻图。 ②使用多层图划分算法划分图。 ③repeat:合并关于相对互连性和相对接近性而言,最好地保持簇的自相似性的簇。 ④until:不再有可以合并的簇。A、MSTB、OPOSSUMC、ChameleonD、Jarvis-Patrick(JP)
考题
关于混合模型聚类算法的优缺点,下面说法正确的是()A、当簇只包含少量数据点,或者数据点近似协线性时,混合模型也能很好地处理B、混合模型比K均值或模糊C均值更一般,因为它可以使用各种类型的分布C、混合模型很难发现不同大小和椭球形状的簇D、混合模型在有噪声和离群点时不会存在问题
考题
单选题以下是哪一个聚类算法的算法流程() ①构造k-最近邻图。 ②使用多层图划分算法划分图。 ③repeat:合并关于相对互连性和相对接近性而言,最好地保持簇的自相似性的簇。 ④until:不再有可以合并的簇。A
MSTB
OPOSSUMC
ChameleonD
Jarvis-Patrick(JP)
考题
单选题关于K均值和DBSCAN的比较,以下说法不正确的是()A
K均值丢弃被它识别为噪声的对象,而DBSCAN一般聚类所有对象B
K均值使用簇的基于原型的概念,而DBSCAN使用基于密度的概念C
K均值很难处理非球形的簇和不同大小的簇,DBSCAN可以处理不同大小和不同形状的簇D
K均值可以发现不是明显分离的簇,即便簇有重叠也可以发现,但是DBSCAN会合并有重叠的簇
考题
单选题关于混合模型聚类算法的优缺点,下面说法正确的是()A
当簇只包含少量数据点,或者数据点近似协线性时,混合模型也能很好地处理B
混合模型比K均值或模糊C均值更一般,因为它可以使用各种类型的分布C
混合模型很难发现不同大小和椭球形状的簇D
混合模型在有噪声和离群点时不会存在问题
热门标签
最新试卷