网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
单选题
设某人群的身高X服从N(155.4,5.32)分布,现从该总体中随机抽出一个n=10的样本,得均值为=158.36,S=3.83,求得μ的95%可信区间为(155.62,161.10),发现该区间竟然没有包括真正的总体均数155.4。若随机从该总体抽取含量n=10的样本200个,每次都求95%置信区间,那么类似上面的置信区间(即不包括155.4在内)大约有()
A
5个
B
20个
C
10个
D
1个
E
190个
参考答案
参考解析
解析:
暂无解析
更多 “单选题设某人群的身高X服从N(155.4,5.32)分布,现从该总体中随机抽出一个n=10的样本,得均值为=158.36,S=3.83,求得μ的95%可信区间为(155.62,161.10),发现该区间竟然没有包括真正的总体均数155.4。若随机从该总体抽取含量n=10的样本200个,每次都求95%置信区间,那么类似上面的置信区间(即不包括155.4在内)大约有()A 5个B 20个C 10个D 1个E 190个” 相关考题
考题
设x1,x2,x3,…,x25是从均匀分布U(0,5)中抽取的一个样本,则样本均值近似服从的分布为________。A.N(5,1/2)B.N(5,1/10)C.N(2.5,1/12)D.N(2.5,1/10)
考题
关于中心极限定理,下列说法正确的是( )。A.多个随机变量的平均值(仍然是一个随机变量)服从或近似服从正态分布B.几个相互独立同分布随机变量,其共同分布不为正态分布或未知,但其均值μ和方差σ2都存在,则在n相当大的情况下,样本均值X近似服从正态分布N(μ,σ2/n)C.无论什么分布(离散分布或连续分布,正态分布或非正态分布),其样本均值X的分布总近似于正态分布D.设n个分布一样的随机变量,假如其共同分布为正态分布N(μ,σ2),则样本均值X仍为正态分布,其均值不变仍为μ,方差为σ2/n
考题
假设某总体服从正态分布N(12,4),现从中随机抽取一容量为5的样本X1,X2,X3,X4,X5,则:样本均值与总体均值之差的绝对值大于1的概率是( )。A.0.2628B.0.98C.0.9877D.0.9977
考题
关于中心极限定理,下列说法正确的是( )。
A.多个随机变量的平均值(仍然是一个随机变量)服从或近似服从正态分布
B. n个相互独立同分布随机变量,其共同分布不为正态分布或未知,但其均值μ和方差σ2都存在,则在n相当大的情况下,样本均值
近似服从正态分布N(μ, σ2/n)
C.无论什么分布(离散分布或连续分布,正态分布或非正态分布),其样本均值的分布总近似于正态分布
D.设n个分布一样的随机变量,假如其共同分布为正态分布N(μ, σ2)则样本均值仍为正态分布,其均值不变仍为μ,方差为 σ2/n
考题
假设某总体服从正态分布N(12, 4),现从中随机抽取一容量为5的样本X1,X2, X3, X4, X5,则:
样本均值与总体均值之差的绝对值大于1的概率是()。
A. 0.2628 B. 0. 98 C. 0.9877 D. 0.9977
考题
从均值为μ,方差为σ2(有限)的任意一个总体中抽取样本容量为n的样本,下列说法正确的是( )。
A.当n充分大时,样本均值图.png的分布近似服从正态分布
B.只有当n
C.样本均值图.png的分布与n无关
D.无论n多大,样本均值图.png的分布都为非正态分布
考题
从均值为μ,方差为σ2的任意一个总体中抽取大小为n的样本,则()A、当n充分大时,样本均值的分布近似服从正态分布B、只有当n30时,样本均值的分布近似服从正态分布C、样本均值的分布与n无关D、无论n多大,样本均值的分布都是非正态分布
考题
设某人群的身高X服从N(155.4,5.32)分布,现从该总体中随机抽出一个n=10的样本,得均值为X=158.36,S=3.83,求得μ的95%可信区间为(155.62,161.10),发现该区间竟然没有包括真正的总体均数155.4。若随机从该总体抽取含量n=10的样本200个,每次都求95%置信区间,那么类似上面的置信区间(即不包括155.4在内)大约有().A、5个B、20个C、10个D、1个E、190个
考题
设(X1,X2,…,X)是抽自正态总体N(0,1)的一个容量为n的样本,记,则下列结论中正确的是()。A、服从正态分布N(0,1)B、n服从正态分布N(0,1)C、服从自由度为n的x2分布D、服从自由度为(n-1)的t分布
考题
关于中心极限定理的描述正确的是:()。A、对于n个相互独立同分布的随机变量共同服从正态分布,则样本均值又仍为正态分布B、正态样本均值服从分布N(μ,σ2/n)C、设X1,X2,„,Xn为n个相互独立共同分布随机变量,其共同分布不为正态分布或未知,但其均值和方差都存在,则在n相当大时,样本均值近似服从正态分布D、无论共同分布是什么,只要变量个数n相当大时,均值的分布总近似于正态分布
考题
多选题关于中心极限定理的描述正确的是:()。A对于n个相互独立同分布的随机变量共同服从正态分布,则样本均值又仍为正态分布B正态样本均值服从分布N(μ,σ2/n)C设X1,X2,„,Xn为n个相互独立共同分布随机变量,其共同分布不为正态分布或未知,但其均值和方差都存在,则在n相当大时,样本均值近似服从正态分布D无论共同分布是什么,只要变量个数n相当大时,均值的分布总近似于正态分布
考题
单选题从均值为μ,方差为σ2的任意一个总体中抽取大小为n的样本,则()A
当n充分大时,样本均值的分布近似服从正态分布B
只有当n30时,样本均值的分布近似服从正态分布C
样本均值的分布与n无关D
无论n多大,样本均值的分布都是非正态分布
考题
单选题设某人群的身高X服从N(155.4,5.32)分布,现从该总体中随机抽出一个n=10的样本,得均值为X=158.36,S=3.83,求得μ的95%可信区间为(155.62,161.10),发现该区间竟然没有包括真正的总体均数155.4。若随机从该总体抽取含量n=10的样本200个,每次都求95%置信区间,那么类似上面的置信区间(即不包括155.4在内)大约有( )。A
5个B
20个C
10个D
1个E
190个
热门标签
最新试卷