网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

设某人群的身高X服从N(155.4,5.32)分布,现从该总体中随机抽出一个n=10的样本,得均值为X=158.36,S=3.83,求得μ的95%可信区间为(155.62,161.10),发现该区间竟然没有包括真正的总体均数155.4。若随机从该总体抽取含量n=10的样本200个,每次都求95%置信区间,那么类似上面的置信区间(即不包括155.4在内)大约有().

  • A、5个
  • B、20个
  • C、10个
  • D、1个
  • E、190个

参考答案

更多 “设某人群的身高X服从N(155.4,5.32)分布,现从该总体中随机抽出一个n=10的样本,得均值为X=158.36,S=3.83,求得μ的95%可信区间为(155.62,161.10),发现该区间竟然没有包括真正的总体均数155.4。若随机从该总体抽取含量n=10的样本200个,每次都求95%置信区间,那么类似上面的置信区间(即不包括155.4在内)大约有().A、5个B、20个C、10个D、1个E、190个” 相关考题
考题 设X~N(0,1),Y~N(0,1),且X与Y相互独立,则X+Y服从的分布为() A、X+Y服从N(0,1)B、X+Y不服从正态分布C、X+Y~X2(2)D、X+Y也服从正态分布

考题 设随机变量X服从正态分布N(2,4),Y服从均匀分布U(3,5),则E(2X-3Y)= __________.

考题 假设某总体服从正态分布N(12,4),现从中随机抽取一容量为5的样本X1,X2,X3,X4,X5,则:样本均值与总体均值之差的绝对值大于1的概率是( )。A.0.2628B.0.98C.0.9877D.0.9977

考题 设总体X服从均匀分布U(1,θ), 则θ的矩估计为(  )。

考题 设X,Y相互独立且都服从分布N(0,4),则( ).

考题 假设某总体服从正态分布N(12, 4),现从中随机抽取一容量为5的样本X1,X2, X3, X4, X5,则: 概率P{max(X1,X2, X3, X4, X5) >15)=( )。 A. 0.2533 B. 0. 2893 C. 0.2923 D. 0.2934

考题 假设某总体服从正态分布N(12, 4),现从中随机抽取一容量为5的样本X1,X2, X3, X4, X5,则: 样本均值与总体均值之差的绝对值大于1的概率是()。 A. 0.2628 B. 0. 98 C. 0.9877 D. 0.9977

考题 设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,依概率收敛于_______.

考题 设总体X~N(0,σ^2),X1,X2,…,X20是总体X的简单样本,求统计量U=所服从的分布.

考题 设总体X服从分布N(0,2^2),而X1,X2,…,X15是来自总体X的简单随机样本,则随机变量服从_______分布,参数为________.

考题 设总体X,Y相互独立且服从N(0,9)分布,(X1,…,X9)与(Y1,…,Y9)分别为来自总体X,Y的简单随机样本,则U=~_______.

考题 设X1,X2,…,Xn是来自总体X的简单随机样本,已知E(X^k)=ak(k=1,2,3,4).   证明:当n充分大时,随机变量近似服从正态分布,并指出其分布参数.

考题 设总体X服从正态分布N(μ,σ^2)(σ>0),从该总体中抽取简单随机样本X1,X2,…,Xn(n≥2),其样本均值,求统计量的数学期望E(Y).

考题 设总体X~N(0,2^2),X1,X2,…,X30为总体X的简单随机样本,求统计量U=所服从的分布及自由度.

考题 设总体X服从正态分布N(μ,σ^2)(σ>0),X1,X1,…,Xn为来自总体X的简单随机样本,令Y=.,求Y的数学期望与方差

考题 当总体服从正态分布时,样本均值一定服从正态分布,即有X~N(μ,σ2)时,

考题 设总体X服从指数分布,概率密度为( )。

考题 设(X1,X2,…,X)是抽自正态总体N(0,1)的一个容量为n的样本,记,则下列结论中正确的是()。A、服从正态分布N(0,1)B、n服从正态分布N(0,1)C、服从自由度为n的x2分布D、服从自由度为(n-1)的t分布

考题 设某质量特性X服从正态分布N(μ,σ),则P(︱X-μ︱≥3σ)等于()。A、973%B、2700ppmC、63ppmD、0027

考题 设随机变量X服从正态分布N(-1,9),则随机变量Y=2-X服从().A、正态分布N(3,9)B、均匀分布C、正态分布N(1,9)D、指数分布

考题 设x1,…,X是取自总体X的容量为n的样本.已知总体X服从参数为p的二点分布,则等于().A、np(p)B、(n-1)p(p)C、npD、np2

考题 多选题设某质量特性X服从正态分布N(μ,σ),则P(︱X-μ︱≥3σ)等于()。A973%B2700ppmC63ppmD0027

考题 单选题设随机变量X服从正态分布N(-1,9),则随机变量Y=2-X服从().A 正态分布N(3,9)B 均匀分布C 正态分布N(1,9)D 指数分布

考题 单选题设总体X服从区间[-2,4]上的均匀分布,x1,x2,···,xn为其样本,则( )A n/3B 1/3C 3/nD 3

考题 单选题设(X1,X2,…,X)是抽自正态总体N(0,1)的一个容量为n的样本,记,则下列结论中正确的是()。A 服从正态分布N(0,1)B n服从正态分布N(0,1)C 服从自由度为n的x2分布D 服从自由度为(n-1)的t分布

考题 单选题设某人群的身高X服从N(155.4,5.32)分布,现从该总体中随机抽出一个n=10的样本,得均值为=158.36,S=3.83,求得μ的95%可信区间为(155.62,161.10),发现该区间竟然没有包括真正的总体均数155.4。若随机从该总体抽取含量n=10的样本200个,每次都求95%置信区间,那么类似上面的置信区间(即不包括155.4在内)大约有()A 5个B 20个C 10个D 1个E 190个

考题 单选题设某人群的身高X服从N(155.4,5.32)分布,现从该总体中随机抽出一个n=10的样本,得均值为X=158.36,S=3.83,求得μ的95%可信区间为(155.62,161.10),发现该区间竟然没有包括真正的总体均数155.4。若随机从该总体抽取含量n=10的样本200个,每次都求95%置信区间,那么类似上面的置信区间(即不包括155.4在内)大约有(  )。A 5个B 20个C 10个D 1个E 190个