网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
填空题
拓扑排序算法是通过重复选择具有()个前驱顶点的过程来完成的。
参考答案
参考解析
解析:
暂无解析
更多 “填空题拓扑排序算法是通过重复选择具有()个前驱顶点的过程来完成的。” 相关考题
考题
● 拓扑排序是指有向图中的所有顶点排成一个线性序列的过程,若在有向图中从顶点vi到vj有一条路径,则在该线性序列中,顶点 vi 必然在顶点 vj之前。因此,若不能得到全部顶点的拓扑排序序列,则说明该有向图一定 (57)(57)A. 包含回路B. 是强连通图C. 是完全图D. 是有向树
考题
以下关于快速排序算法的描述中,错误的是( )。在快速排序过程中,需要设立基准元素并划分序列来进行排序。若序列由元素{12,25,30,45,52,67,85}构成,则初始排列为( )时,排序效率最高(令序列的第一个元素为基准元素)。A.快速排序算法是不稳定的排序算法B.快速排序算法在最坏情况下的时间复杂度为0(nlgn)C.快速排序算法是一种分治算法D.当输入数据基本有序时,快速排序算法具有最坏情况下的时间复杂度
考题
阅读下列算法说明和算法,将应填入(n)处的语句写在对应栏内。1. 【说明】实现连通图G的深度优先遍历(从顶点v出发)的非递归过程。【算法】第一步:首先访问连通图G的指定起始顶点v;第二步:从V出发,访问一个与v(1)p,再从顶点P出发,访问与p(2)顶点q,然后从q出发,重复上述过程,直到找不到存在(3)的邻接顶点为止。第三步:回退到尚有(4)顶点,从该顶点出发,重复第二、三步,直到所有被访问过的顶点的邻接点都已被访问为止。因此,在这个算法中应设一个栈保存被(5)的顶点,以便回溯查找被访问过顶点的未被访问过的邻接点。
考题
拓扑排序的主要步骤有()
A、在AOV网中,选一个没有后继的节点,并输出B、在网中删去该顶点,并删去所有指向该顶点的弧C、重复上述两步,直到网中不再有出度为0的顶点为止D、删除网中的回路
考题
阅读下列说明和C代码,回答问题1至问题3,将解答写在答题纸的对应栏内。【说明】对有向图进行拓扑排序的方法是:(1)初始时拓扑序列为空;(2)任意选择一个入度为0的顶点,将其放入拓扑序列中,同时从图中删除该顶点以及从该顶点出发的弧;(3)重复(2),直到不存在入度为0的顶点为止(若所有顶点都进入拓扑序列则完成拓扑排序,否则由于有向图中存在回路无法完成拓扑排序)。函数int*TopSort(LinkedDigraph G)的功能是对有向图G中的顶点进行拓扑排序,返回拓扑序列中的顶点编号序列,若不能完成拓扑排序,则返回空指针。其中,图G中的顶点从1开始依次编号,顶点序列为vl,v2,…,vn,图G采用邻接表表示,其数据类型定义如下:define MAXVNUM 50 /*最大顶点数*/typedef struct ArcNode| /*表结点类型*/int adjvex; /*邻接顶点编号*/struct ArcNode*nextarc; /*指示下一个邻接顶点*/{ArcNode;typedef struct AdjList{ /*头结点类型*/char vdata; /*顶点的数据信息*/ArcNode*firstarc; /*指向邻接表的第一个表结点*/}AdjList;typedef struct LinkedDigraph /*图的类型*/int n: /*图中顶点个数*/AdjList Vhead[MAXVNUM]; /*所有顶点的头结点数组*/}LinkedDigraph;例如,某有向图G如图4-1所示,其邻接表如图4-2所示。函数TopSort中用到了队列结构(Queue的定义省略),实现队列基本操作的函数原型如下表所示:【C代码】int*TopSort(LinkedDigraph G){ArcNode*P; /*临时指针,指示表结点*/Queue Q; /*临时队列,保存入度为0的顸点编号*/int k=0; /*临时变量,用作数组元素的下标*/int j=0,w=0; /*临时变量,用作顶点编号*/int*topOrder,*inDegree;topOrder=(int*)malloc((G.n+1)*sizeof(int));/*存储拓扑序列中的顶点编号*/inDegree=(int*)malloc((G.n+1)*sizeof(int));/*存储图G中各顶点的入度*/if(!inDegree||!topOrder) return NULL;(1); /*构造一个空队列*/for(j=1;j=Gn;j++){ /*初始化*/topOrder[j]=0;inDegree[j]=0;}for(j=1;j=Gn;j++) /*求图G中各顶点的入度*/for(p=G.Vhead[j].firstarc;p;p=p-nextarc)inDegree[P-adjvex]+=1;for(j=i;j=G.n;J++) /*将图G中入度为0的顶点保存在队列中*/if(0==inDegree[j]) EnQueue(Q,j);while(! IsEmpty(Q)){(2); /*队头顶点出队列并用w保存该顶点的编号*/topOrder[k++]=w; /*将顶点W的所有邻接顶点的入度减l(模拟删除顶点w及该顶点出发的弧的操作)*/for(p=G.Vhead[w].firstarc;p;p=p-nextarc){(3)-=1;if(0== (4) ) EnQueue(Q,P-adjvex);}/*for*/}/ * while*/free(inDegree);if( (5) )return NULL;return topOrder;}/*TopSort*/根据以上说明和C代码,填充C代码中的空(1)
考题
设某有向无环图的顶点个数为n、弧数为e,那么用邻接表存储该图时,实现上述拓扑排序算法的函数TopSort的时间复杂度是(6)。若有向图采用邻接矩阵表示(例如,图4-1所示有向图的邻接矩阵如图4-3所示),且将函数TopSort中有关邻接表的操作修改为针对邻接矩阵的操作,那么对于有n个顶点、e条弧的有向无环图,实现上述拓扑排序算法的时问复杂度是(7)。
考题
问答题拓扑排序的主要功能是什么?对于一个存在拓扑序列的有向图,通过拓扑排序得到的拓扑序列是否惟一?
热门标签
最新试卷