网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
单选题
n维向量α(→)1,α(→)2,…,α(→)s线性无关的充要条件是(  )。
A

存在不全为0的k1,k2,…,ks使klα()1+k2α()2+…+ksα()s0()

B

添加向量β()后,α()1α()2,…,α()sβ()线性无关

C

去掉任一向量α()i后,α()1α()2,…,α()i1α()i1,…,α()s线性无关

D

α()1α()2α()1α()3α()1,…,α()sα()1线性无关


参考答案

参考解析
解析:
D项,相当于对α()1α()2,…,α()s构成的矩阵作初等变换,初等变换不改变向量组的秩和向量组的线性相关性。
更多 “单选题n维向量α(→)1,α(→)2,…,α(→)s线性无关的充要条件是(  )。A 存在不全为0的k1,k2,…,ks使klα(→)1+k2α(→)2+…+ksα(→)s≠0(→)B 添加向量β(→)后,α(→)1,α(→)2,…,α(→)s,β(→)线性无关C 去掉任一向量α(→)i后,α(→)1,α(→)2,…,α(→)i-1,α(→)i+1,…,α(→)s线性无关D α(→)1,α(→)2-α(→)1,α(→)3-α(→)1,…,α(→)s-α(→)1线性无关” 相关考题
考题 向量组α1,α2,…,αm(m≥2)线性相关的充要条件是( )。 A、α1,α2,…,αm中至少有一个零向量 B、α1,α2,…,αm中至少有两个向量成比例 C、存在不全为零的常数k1,k2,…,km,使k1α1+k2α2+…+kmαm=0 D、α1,α2,…,αm中每个向量都能由其余向量线性表示

考题 3维向量组A:a1,a2,…,am线性无关的充分必要条件是( ).A.对任意一组不全为0的数k1,k2,…,km,都有k1a1+k2a2+…+kmam≠0 B.向量组A中任意两个向量都线性无关 C.向量组A是正交向量组 D.

考题 设向量组I:α1α2αr…,可由向量组Ⅱβ1,β2,…βs:线性表示,下列命题正确的是( )。A.若向量组I线性无关.则r≤S B.若向量组I线性相关,则r>s C.若向量组Ⅱ线性无关,则r≤s D.若向量组Ⅱ线性相关,则r>s

考题 3维向量组A:α1,α2,…,αM线性无关的充分必要条件是().A、对任意一组不全为0的数k1,k2,…,kM,都有后B、向量组A中任意两个向量都线性无关C、向量组A是正交向量组D、αM不能由线性表示

考题 单选题已知向量组α1,α2,α3,α4线性无关,则(  ).A α1+α2,α2+α3,α3+α4,α4+α1线性无关B α1-α2,α2-α3,α3-α4,α4-α1线性无关C α1+α2,α2+α3,α3+α4,α4-α1线性无关D α1+α2,α2+α3,α3-α4,α4-α1线性无关

考题 单选题n维向量组,α(→)1,α(→)2,…,α(→)s(3≤s≤n)线性无关的充要条件是(  )。A 存在一组不全为0的数k1,k2,…,ks,使kα(→)1+k2α(→)2+…+ksα(→)s≠0(→)B α(→)1,α(→)2,…,α(→)s中任意两个向量都线性无关C α(→)1,α(→)2,…,α(→)s中存在一个向量不能由其余向量线性表示D α(→)1,α(→)2,…,α(→)s中任何一个向量都不能由其余向量线性表示

考题 单选题如果向量b(→)可以由向量组α(→)1,α(→)2,…,α(→)3线性表示,则(  )。A 存在一组不全为零的数是k1,k2,…ks,使b(→)=k1α(→)1+k2α(→)2+…+ksα(→)s成立B 存在一组全为零的数k1,k2,…ks,使b(→)=k1α(→)1+k2α(→)2+…+ksα(→)s成立C 存在一组数k1,k2,…ks,使b(→)=k1α(→)1+k2α(→)2+…+ksα(→)s成立D 对b的线性表达式唯一

考题 问答题在n维行向量组α(→)1,α(→)2,…,α(→)r(r≥2)中,α(→)r≠0,试证:对任意的k1,k2,kr-1,向量组β(→)1=α(→)1+k1α(→)r,β(→)2=α(→)2+k2α(→)r,…,β(→)r-1=α(→)r-1+kr-1α(→)r线性无关的充要条件是α(→)1,α(→)2,…,α(→)r线性无关。

考题 单选题设向量组(I)α(→)1,α(→)2,…,α(→)s,其秩为r1;向量组(Ⅱ)β(→)1,β(→)2,…,β(→)s,其秩为r2,且β(→)i(i=1,2,…,s)均可以由α(→)1,…,α(→)s线性表示,则(  )。A 向量组α(→)1+β(→)1,α(→)2+β(→)2,…,α(→)s+β(→)s的秩为r1+r2B 向量组α(→)1-β(→)1,α(→)2-β(→)2,…,α(→)s-β(→)s秩为rl-r2C 向量组α(→)1,α(→)2,…,α(→)s,β(→)1,β(→)2,…,β(→)s的秩为rl+r2D 向量组α(→)1,α(→)2,…,α(→)s,β(→)1,β(→)2,…,β(→)s的秩为rl

考题 单选题下列说法不正确的是(  ).A s个n维向量α1,α2,…,αs线性无关,则加入k个n维向量β1,β2,…,βk后的向量组仍然线性无关B s个n维向量α1,α2,…,αs线性无关,则每个向量增加k维分量后得到的向量组仍然线性无关C s个n维向量α1,α2,…,αs线性相关,则加入k个n维向量β1,β2,…,βk后得到的向量组仍然线性相关.D s个n维向量α1,α2,…,αs线性无关,则减少一个向量后得到的向量组仍然线性无关.

考题 单选题设n维向量组(Ⅰ)α1,α2,…,αs线性无关,(Ⅱ)β1,β2,…,βt线性无关,且αi不能由(Ⅱ)线性表示(i=1,2,…,s),βj且不能由(I)线性表示(j=1,2,…,t),则向量组α1,α2,…,αs,β1,β2,…,βt(  ).A 一定线性相关B 一定线性无关C 可能线性相关,也可能线性无关D 既不线性相关,也不线性无关

考题 单选题向量组α(→)1,α(→)2,…,α(→)s线性无关的充分条件是(  )。A α(→)1,α(→)2,…,α(→)s均不为零向量B α(→)1,α(→)2,…,α(→)s中任意两个向量的分量不成比例C α(→)1,α(→)2,…,α(→)s中任意一个向量均不能由其余s-1个向量线性表示D α(→)1,α(→)2,…,α(→)s中有一部分向量线性无关

考题 单选题3维向量组A:α1,α2,…,αM线性无关的充分必要条件是().A 对任意一组不全为0的数k1,k2,…,kM,都有后B 向量组A中任意两个向量都线性无关C 向量组A是正交向量组D αM不能由线性表示

考题 单选题如果向量β可由向量组α1,α2,…,αs,线性表示,则下列结论中正确的是:()A 存在一组不全为零的数k1,k2,…,ks使等式β=k1α1+k2α2+…+ksαs成立B 存在一组全为零的数k1,k2,…,ks,使等式β=k1α1+k2α2+…+ksαs,成立C 存在一组数k1,k2,…,ks,使等式β=k1α1+k2α2+…+ksαs,成立D 对β的线性表达式唯一

考题 问答题设向量组α(→)1,α(→)2,…,α(→)s的秩为r>0,证明:  (1)α(→)1,α(→)2,…,α(→)s中任意r个线性无关的向量都构成它的一个极大线性无关组;  (2)若α(→)1,α(→)2,…,α(→)s中每个向量都可由其中某r个向量线性表示,则这r个向量必为α(→)1,α(→)2,…,α(→)s的一个极大线性无关组。

考题 单选题n维向量组,α1,α2,…,αs(3≤s≤n)线性无关的充要条件是(  ).A 存在一组不全为0的数k1,k2,…,kis,使kα1+k2α2+…+ksαs≠0B α1,α2,…,αs,中任意两个向量都线性无关C α1,α2,…,αs,中存在一个向量不能由其余向量线性表示D α1,α2,…,αs,中任何一个向量都不能由其余向量线性表示

考题 单选题设α(→)1,α(→)2,…,α(→)s均为n维列向量,A是m×n矩阵,下列选项正确的是(  )。A 若α(→)1,α(→)2,…,α(→)s线性相关,则Aα(→)1,Aα(→)2,…,Aα(→)s线性相关B 若α(→)1,α(→)2,…,α(→)s线性相关,则Aα(→)1,Aα(→)2,…,Aα(→)s线性无关C 若α(→)1,α(→)2,…,α(→)s线性无关,则Aα(→)1,Aα(→)2,…,Aα(→)s线性相关D 若α(→)1,α(→)2,…,α(→)s线性无关,则Aα(→)1,Aα(→)2,…,Aα(→)s线性无关

考题 单选题n维向量组α(→)1,α(→)2,…,α(→)s线性无关的充分条件是(  )。A α(→)1,α(→)2,…,α(→)s中没有零向量B 向量组的个数不大于维数,即s≤nC α(→)1,α(→)2,…,α(→)s中任意两个向量的分量不成比例D 某向量β(→)可由α(→)1,α(→)2,…,α(→)s线性表示,且表示法唯一

考题 单选题n维向量α(→)1,α(→)2,…,α(→)s线性无关的充要条件是(  )。A 存在不全为0的k1,k2,…,ks使klα(→)1+k2α(→)2+…+ksα(→)s≠0(→)B 添加向量β(→)后,α(→)1,α(→)2,…,α(→)s,β(→)线性无关C 去掉任一向量α(→)i后,α(→)1,α(→)2,…,α(→)i-1,α(→)i+1,…,α(→)s线性无关D α(→)1,α(→)2-α(→)1,α(→)3-α(→)1,…,α(→)s-α(→)1线性无关

考题 单选题设n维向量组(Ⅰ)α(→)1,α(→)2,…,α(→)s线性无关,(Ⅱ)β(→)1,β(→)2,…,β(→)t线性无关,且α(→)i不能由(Ⅱ)线性表示(i=1,2,…,s),且β(→)j不能由(Ⅰ)线性表示(j=1,2,…,t),则向量组α(→)1,α(→)2,…,α(→)s,β(→)1,β(→)2,…,β(→)t(  )。A 一定线性相关B 一定线性无关C 可能线性相关,也可能线性无关D 既不线性相关,也不线性无关