网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
单选题
已知向量组α1,α2,α3,α4线性无关,则(  ).
A

α12,α23,α34,α41线性无关

B

α12,α23,α34,α41线性无关

C

α12,α23,α34,α41线性无关

D

α12,α23,α34,α41线性无关


参考答案

参考解析
解析:
A项,(α12)+(α34)-(α23)-(α41)=0,知此组向量不一定线性无关;B项,全部相加为0,此组向量不一定线性相关;C项,设有数k1,k2,k3,k4,使k1(α12)+k2(α23)+k3(α34)+k4(α41)=0即(k1+k4)α1+(k1+k2)α2+(k2+k3)α3+(k3+k4)α4=0,因α1,α2,α3,α4线性无关,故k1,k2,k3,k4,全为0,所以此组向量线性无关;D项,因(α12)-(α23)+(α34)+(α41)=0.
更多 “单选题已知向量组α1,α2,α3,α4线性无关,则(  ).A α1+α2,α2+α3,α3+α4,α4+α1线性无关B α1-α2,α2-α3,α3-α4,α4-α1线性无关C α1+α2,α2+α3,α3+α4,α4-α1线性无关D α1+α2,α2+α3,α3-α4,α4-α1线性无关” 相关考题
考题 设α1,α2,α3,α4 是三维实向量,则( )A. α1,α2,α3,α4一定线性无关 B. α1一定可由α2,α3,α4线性表出C. α1,α2,α3,α4一定线性相关 D. α1,α2,α3一定线性无关

考题 设向量组α1=(1,2,3,6),α2=(1,-1,2,4),α3=(-1,1,-2,-8),α4=(1,2,3,2).(1)求该向量组的一个极大线性无关组;

考题 已知向量组α1,α2,α3,α4线性无关,证明:α1+α2,α2+α3,α3+α4,α4-α1线性无关.

考题 已知向量组a1==(3,2,-5)T,a2= (3,-1,3)T,a3 = (1,-1/3,1)T,a4 =(6,-2,6)T,则该向量组的一个极大线性无关组是: A.a2,a4 B.a3,a4 C.a1,a2 D.a2,a3

考题 IP经X线照射后形成潜影,其中的铕离子的变化是()A、1+→2+B、2+→1+C、2+→3+D、3+→2+E、2+→4+

考题 设α1,α2,α3,β是n维向量组,已知α1,α2,β线性相关,α2,α3,β线性无关,则下列结论中正确的是()。A、β必可用α1,α2线性表示B、α1必可用α2,α3,β线性表示C、α1,α2,α3必线性无关D、α1,α2,α3必线性相关

考题 单选题设α1,α2,α3,α4是4维非零列向量组,A=(α1,α2,α3,α4),A*是A的伴随矩阵,已知方程组AX=0的基础解系为k(1,0,2,0)T,则方程组A*X=0的基础解系为(  ).A α1,α2,α3B α1+α2,α2+α3,3α3C α2,α3,α4D α1+α2,α2+α3,α3+α4,α4+α1

考题 单选题设α1,α2,α3,β是n维向量组,已知α1,α2,β线性相关,α2,α3,β线性无关,则下列结论中正确的是(  )。[2012年真题]A β必可用α1,α2线性表示B α1必可用α2,α3,β线性表示C α1,α2,α3必线性无关D α1,α2,α3必线性相关

考题 单选题设n元齐次线性方程组AX(→)=0(→),秩(A)=n-3,且α(→)1,α(→)2,α(→)3为其3个线性无关的解,则(  )为其基础解系。A α(→)1+α(→)2,α(→)2+α(→)3,α(→)1+α(→)3B α(→)1-α(→)2,α(→)2-α(→)3,α(→)3-α(→)1C α(→)1+α(→)2+α(→)3,α(→)3-α(→)2,α(→)1+2α(→)3D α(→)1-α(→)2,2α(→)2-3α(→)3,3α(→)3-2α(→)1

考题 单选题设向量组α1,α2,α3线性无关,则下列向量组线性相关的是(  ).A α1-α2,α2-α3,α3-α1B α1+α2,α2+α3,α3+α1C α1-2α2,α2-2α3,α3-2α1D α1+2α2,α2+2α3,α3+2α1

考题 单选题设α(→)1,α(→)2,α(→)3线性无关,则与α(→)1,α(→)2,α(→)3等价的是(  )。A α(→)1+α(→)2,α(→)2+α(→)3B α(→)1+α(→)2,α(→)1-α(→)2,3α(→)1,4α(→)2C α(→)1+α(→)2,α(→)1-α(→)2,α(→)1+α(→)3,α(→)1-α(→)3D α(→)1+α(→)2,α(→)2-α(→)3

考题 填空题已知向量组(α(→)1,α(→)3),(α(→)1,α(→)3,α(→)4),(α(→)2,α(→)3)都线性无关,而(α(→)1,α(→)2,α(→)3,α(→)4)线性相关,则向量组(α(→)1,α(→)2,α(→)3,α(→)4)的极大无关组是____。

考题 单选题已知向量组α1=(3,2,-5)T,α2=(3,-1,3)T,α3=(1,-1/3,1)T,α4=(6,-2,6)T,则该向量组的一个极大线性无关组是(  )。[2013年真题]A α2,α4B α3,α4C α1,α2D α2,α3

考题 单选题已知向量组(α(→)1,α(→)3),(α(→)1,α(→)3,α(→)4),(α(→)2,α(→)3)都线性无关,而(α(→)1,α(→)2,α(→)3,α(→)4)线性相关,则向量组(α(→)1,α(→)2,α(→)3,α(→)4)的极大无关组是(  )。A (α(→)1,α(→)2,α(→)4)B (α(→)1,α(→)3,α(→)4)C (α(→)1,α(→)2,α(→)3)D (α(→)2,α(→)3,α(→)4)

考题 单选题设α1,α2,α3,β是n维向量组,已知α1,α2,β线性相关,α2,α3,β线性无关,则下列结论中正确的是()。A β必可用α1,α2线性表示B α1必可用α2,α3,β线性表示C α1,α2,α3必线性无关D α1,α2,α3必线性相关

考题 单选题设向量组α(→)1,α(→)2,α(→)3线性无关,向量β(→)1可由α(→)1,α(→)2,α(→)3线性表示,而向量β(→)2不能由α(→)1,α(→)2,α(→)3线性表示,则对任意常数,必有(  )。A α(→)1,α(→)2,α(→)3,kβ(→)1+β(→)2线性无关B α(→)1,α(→)2,α(→)3,kβ(→)1+β(→)2线性相关C α(→)1,α(→)2,α(→)3,β(→)1+kβ(→)2线性无关D α(→)1,α(→)2,α(→)3,β(→)1+kβ(→)2线性相关

考题 单选题已知n元非齐次线性方程组Ax=B,秩r(A)=n-2,α1,α2,α3为其线性无关的解向量,k1,k2为任意常数,则Ax=B的通解为(  )。[2014年真题]A x=k1(α1-α2)+k2(α1+α3)+α1B x=k1(α1-α3)+k2(α2+α3)+α1C x=k1(α2-α1)+k2(α2-α3)+α1D x=k1(α2-α3)+k2(α1+α2)+α1

考题 单选题(2009)设α1,α2,α3是三维列向量,│A│=α│1,α2,α3│,则与│A│相等的是:()A │α1,α2,α3│B │-α2,-α3,-α1│C │α1+α2,α2+α3,α3+α1│D │α1,α2,α3+α2+α1│

考题 单选题n维向量α(→)1,α(→)2,…,α(→)s线性无关的充要条件是(  )。A 存在不全为0的k1,k2,…,ks使klα(→)1+k2α(→)2+…+ksα(→)s≠0(→)B 添加向量β(→)后,α(→)1,α(→)2,…,α(→)s,β(→)线性无关C 去掉任一向量α(→)i后,α(→)1,α(→)2,…,α(→)i-1,α(→)i+1,…,α(→)s线性无关D α(→)1,α(→)2-α(→)1,α(→)3-α(→)1,…,α(→)s-α(→)1线性无关

考题 问答题设η(→)1,η(→)2,η(→)3,η(→)4是五元非齐次线性方程组AX(→)=b(→)的四个解,且秩r(A)=3,又设:η(→)1+η(→)2+η(→)3+η(→)4=(4,-8,-12,12,16)T,η(→)1+2η(→)2+2η(→)3+η(→)4=(6,18,-18,-30,12)T,2η(→)1+2η(→)2+η(→)3+η(→)4=(18,-30,-36,30,36)T,求方程组AX(→)=b(→)的通解。

考题 单选题设向量α1、α2、α3线性无关,向量β1可由αl、α2、α3线性表示,向量β2不能由α1、α2、α3线性表示,则对任意常数k必有(  ).A α1、α2、α3、kβ1+β2线性无关B α1、α2、α3、kβ1+β2线性相关C α1、α2、α3、β1+kβ2线性元关D α1、α2、α3、β1+kβ2线性相关