网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
根据除法、分数和比之间的内在联系,由除法的商不变的性质推导出分数的基本性质,这里采用的思维方法是()。
- A、归纳
- B、演绎
- C、类比
- D、分类
参考答案
更多 “根据除法、分数和比之间的内在联系,由除法的商不变的性质推导出分数的基本性质,这里采用的思维方法是()。A、归纳B、演绎C、类比D、分类” 相关考题
考题
在教学“比的基本性质”时,教师引导学生根据比与分数和除法之间的关系(即比的前项相当于分数的分子或除法中的被除数,比号相当于分数线或除号,后项相当于分母或除数,比值相当于分数值或商),以及分数的基本性质和商不变的规律,进行大胆猜测:“在‘比’这部分知识中是不是也有一个比值不变的规律?”最后通过验证,得出比的基本性质。以上教学设计体现了()在概念形成中的重要作用。
A.动手操作B.类比发现C.归纳发现D.变式练习
考题
《论毅力》一文中,引孔子的话说:“譬如为山,未成一篑,止,吾止也;譬如平地,虽复一篑,进,吾往也。”这里运用的论证方法是( )。 A.归纳和类比 B.演绎和类比 C.归纳和演绎 D.类比和对比
考题
小学数学《比的基本性质》
一、考题回顾
题目来源1月6日 下午 河南省开封市 面试考题
试讲题目1.题目:比的基本性质
2.内容:
?
3.基本要求:
(1)要有板书;
(2)试讲十分钟左右;
(3)条理清晰,重点突出;
(4)学生掌握比的基本性质。
答辩题目1.在本课的教学中主要运用的教学方法是什么?
2.请你叙述一下如何把小数之间的比化成简单的整数比?
二、考题解析
【教学过程】
(一)引入新课
复习比的概念,以及两个数的比还可以写成什么样的形式。比如6:8。并引导学生思考通常进行约分、通分是运用了分数的性质,那么比是不是也具有同样的性质呢?引出新课。
(二)探索新知
1.比的基本性质。
提问:我们通常进行约分、通分,是运用了分数的什么性质?这一性质和除法有什么关系呢?
预设:除法有商不变的性质:被除数和除数同时乘以或除以相同的数(0除外),商不变。被除数在分数中相当于分子,除数在分数中相当于分母,因此推出了分数的基本性质。
追问1:联系比和除法的关系,猜想一下,会不会存在类似商不变这样的规律呢?
学生以小组为单位,利用导入中的例子进行讨论:比的前项和后项及比值会有什么样的规律呢?
预设:
6÷8=(6×2)÷(8×2)=12÷16
6:8=(6×2):(8×2)=12:16
6÷8=(6÷2)÷(8÷2)=3÷4
6:8=(6÷2):(8÷2)=3:4
师生共同总结:比的前项、后项同时乘或除以相同的数(0除外),比值不变。
让学生类比刚刚的探究过程,接下来思考用比和分数的关系,运用刚才的研究方法,对比规律进行再一次的探索。
从而总结比的基本性质:比的前项、后项同时乘或除以相同的数(0除外),比值不变。
2.化简比的方法。
①让学生解决:求两面国旗的长和宽的最简整数比。
预设1:第一面联合国旗长和宽的比是15:10。利用比的基本性质,将前项、后项同时除以两个数的最大公因数。
预设2:第二面联合国旗长和宽的比是180:120。同样利用比的基本性质,将前项、后项同时除以两个数的最大公因数。
②化简比1/6:2/9 0.75:2
提问:怎样才能化为最简整数比?根据的是什么?
预设:将分数化成整数,然后进行化简。
追问:如果前项、后项出现了小数怎么办?当化简的比不是整数比时,应该怎么办?
预设:将小数化成整数,再进行化简。
(三)课堂练习
问题:小亮身高155cm,小红身高1m,两个人的身高比是多少?
提问:若前后项带有不同单位的比,应该怎样化简?
(四)小结作业
提问:今天有什么收获?
课后作业:课后相应练习题。
【板书设计】
比的基本性质
6÷8=(6×2)÷(8×2)=12÷16 练习:
6:8=(6×2):(8×2)=12:16
6÷8=(6÷2)÷(8÷2)=3÷4
6:8=(6÷2):(8÷2)=3:4
比的基本性质:比的前项、后项同时乘或除以
相同的数(0除外),比值不变。
1.在本课的教学中主要运用的教学方法是什么?
2.请你叙述一下如何把小数之间的比化成简单的整数比?
考题
在教学“比的基本性质”时,教师引导学生根据比与分数和除法之间的关系(即比的前项相当于分数的分子或除法中的被除数,比号相当于分数线或除号,后项相当于分母或除数,比值相当于分数值或商),以及分数的基本性质和商不变的规律,进行大胆猜测:“在‘比’这部分知识中是不是也有一个比值不变的规律?”最后通过验证,得出比的基本性质。以上教学设计体现了()在概念形成中的重要作用。A、动手操作B、类比发现C、归纳发现D、变式练习
考题
单选题根据除法、分数和比之间的内在联系,由除法的商不变的性质推导出分数的基本性质,这里采用的思维方法是()。A
归纳B
演绎C
类比D
分类
热门标签
最新试卷